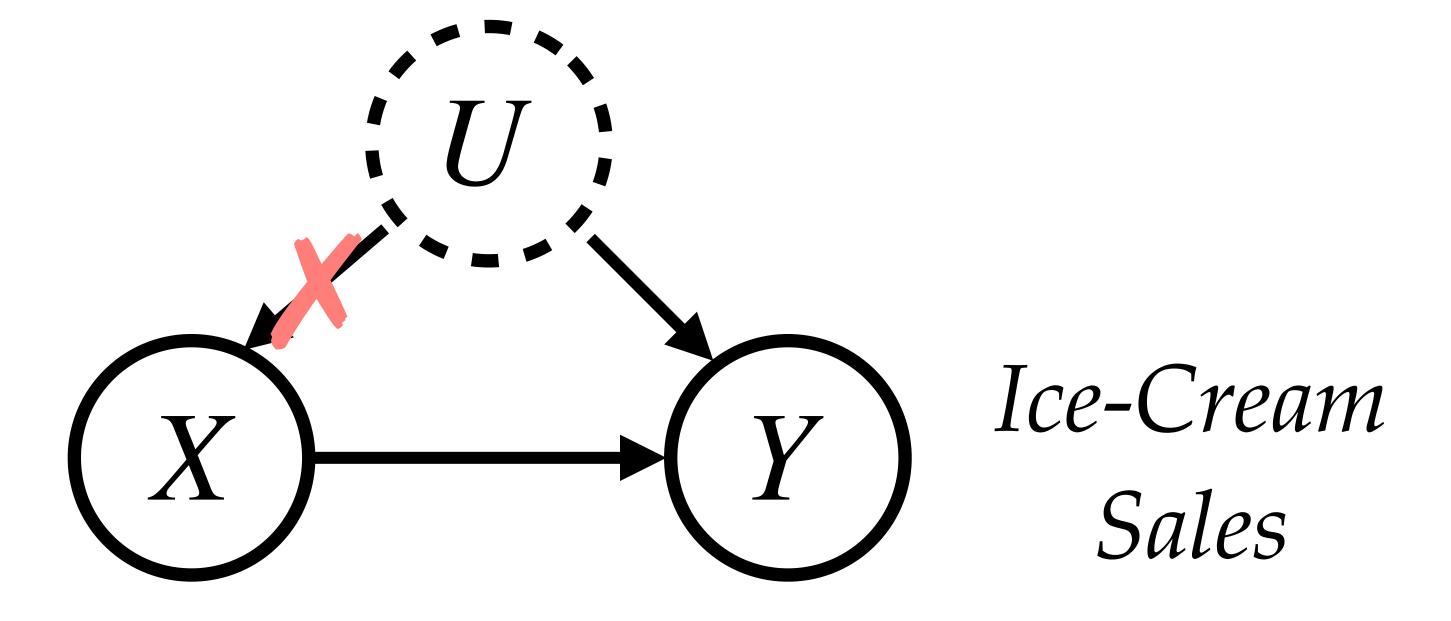
Causal Confounds in Sequential Decision Making

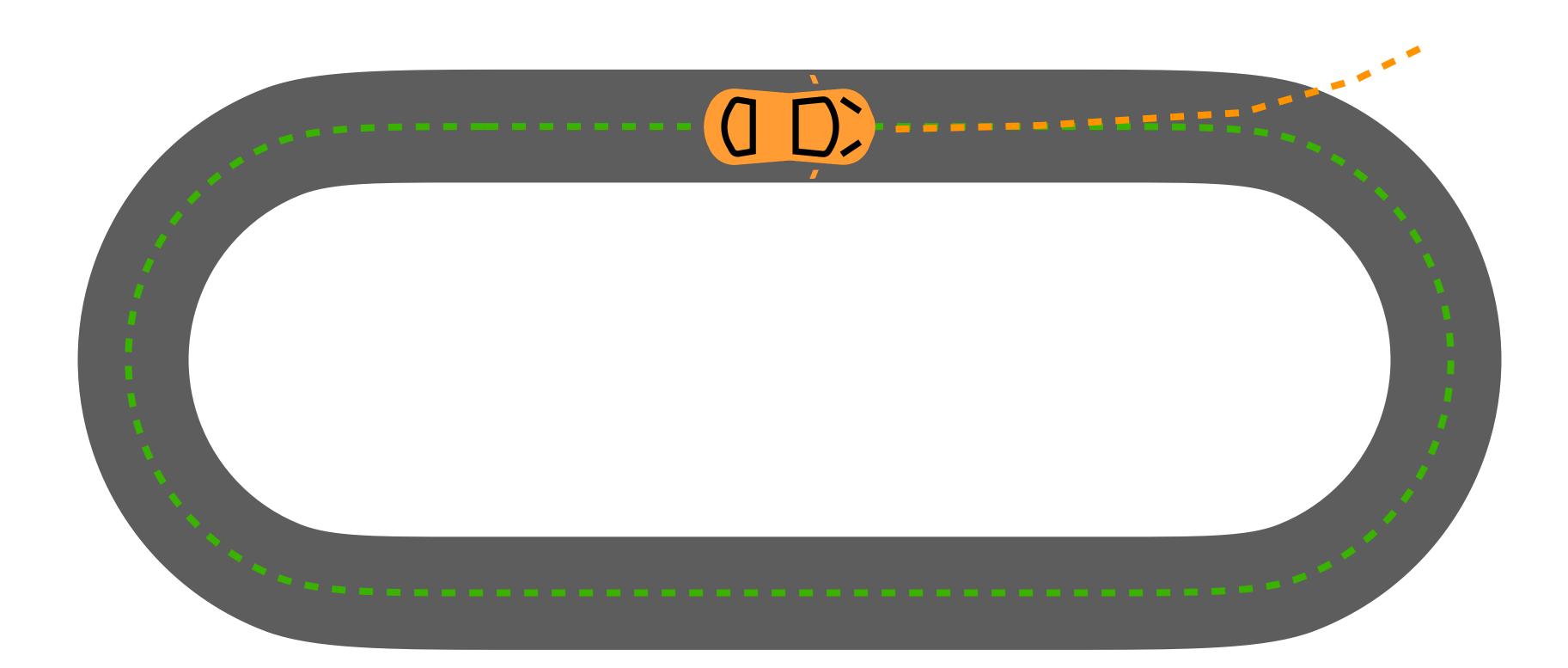
(joint work with Sanjiban Choudhury, Drew Bagnell, Steven Wu)

Gokul Swamy

Swimsuit Sales

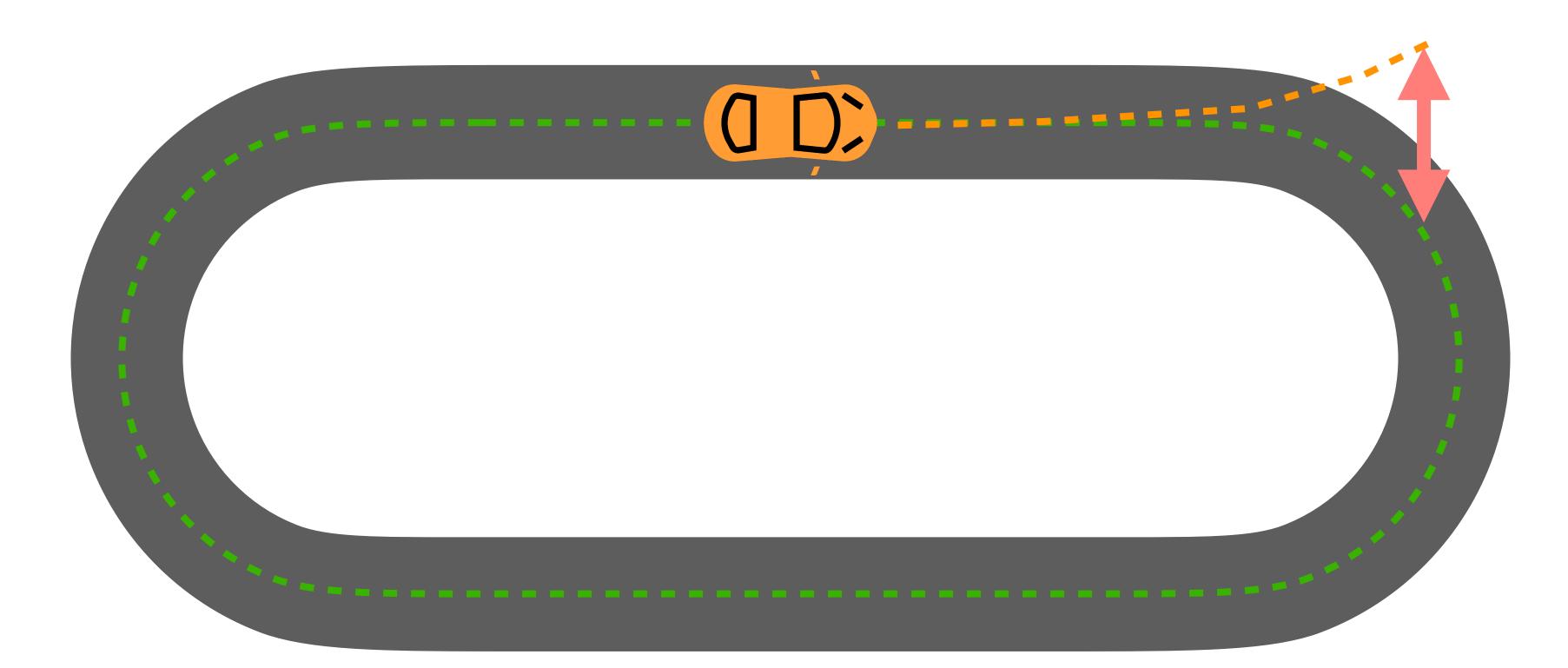


ventions happen via nteraction with ronment in sequential ecision making.



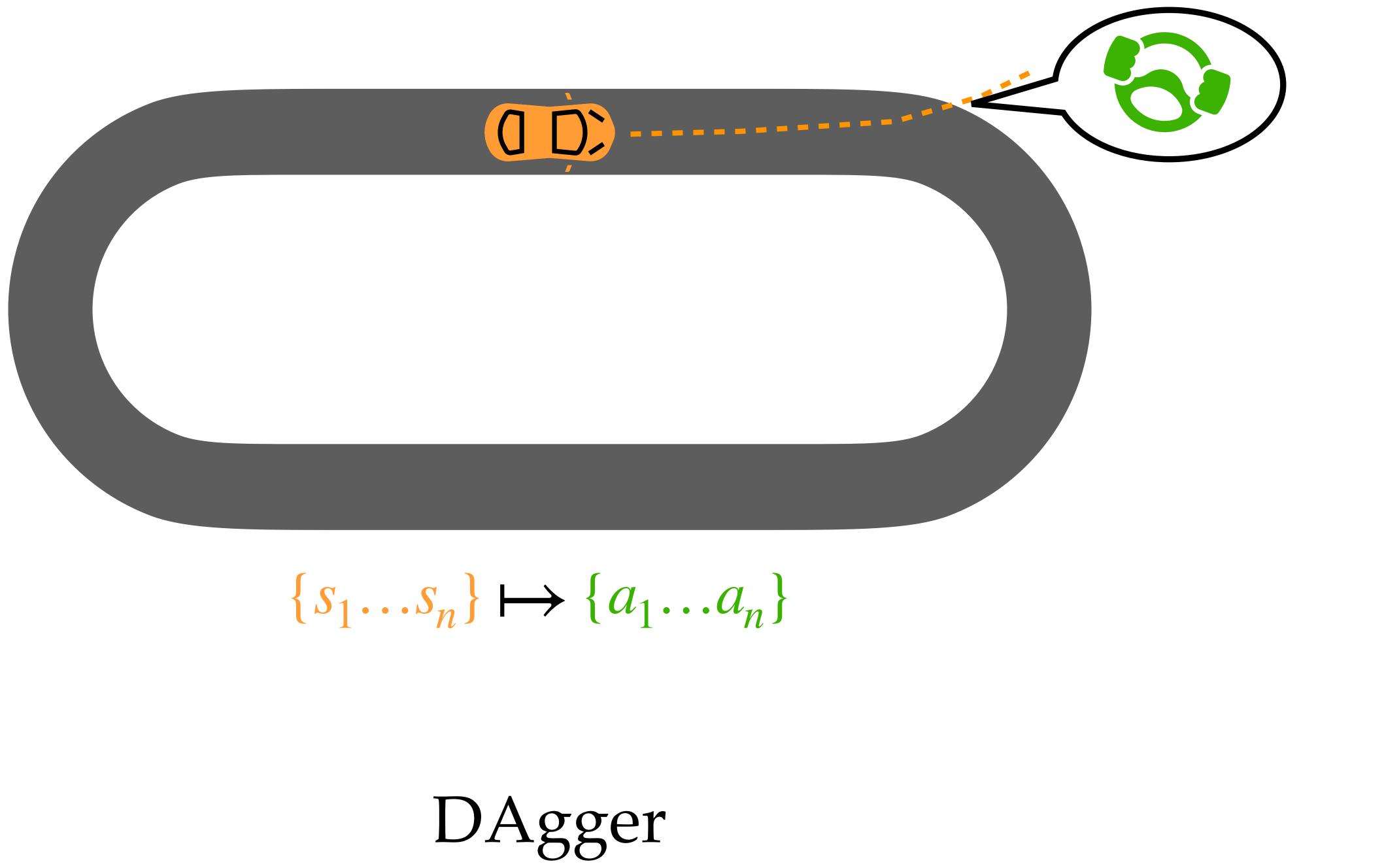
Behavioral Cloning

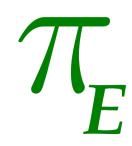
 $\{s_1...s_n\} \mapsto \{a_1...a_n\}$

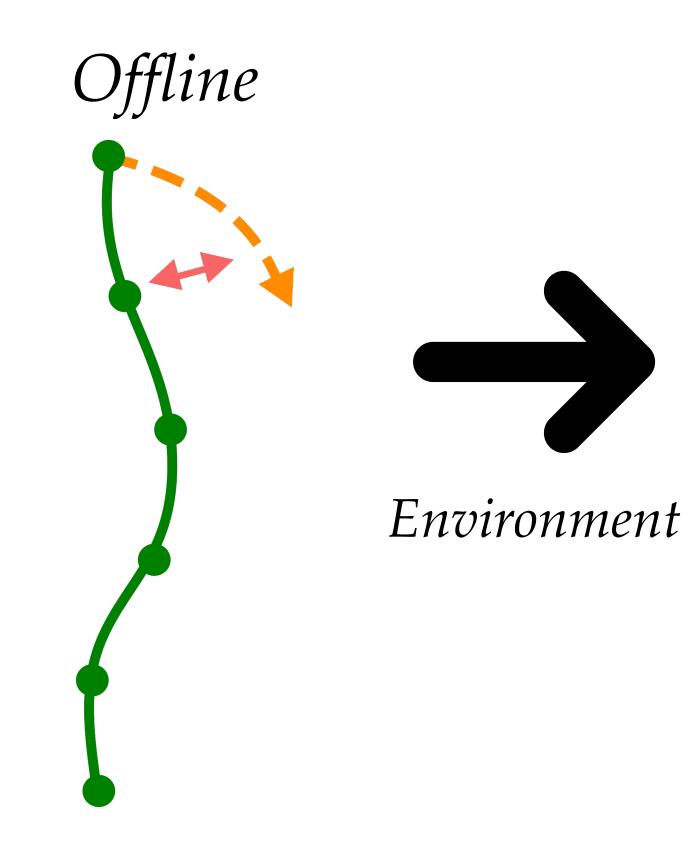


 $\begin{cases} s_1 \dots s_n \\ a_1 \dots a_n \end{cases} \longleftrightarrow \begin{cases} s_1 \dots s_n \\ a_1 \dots a_n \end{cases}$

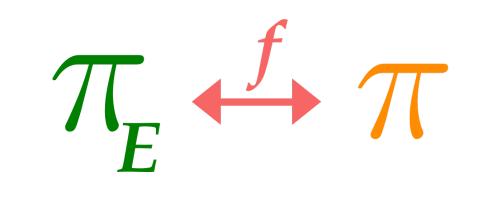
MaxEnt IRL / GAIL



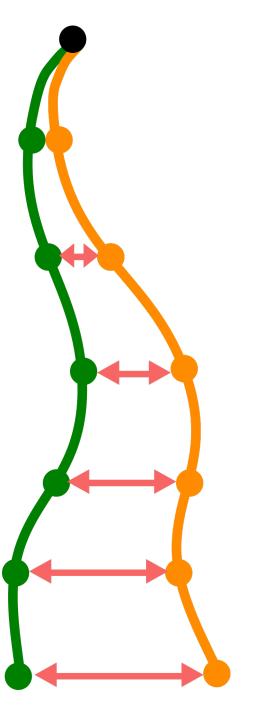


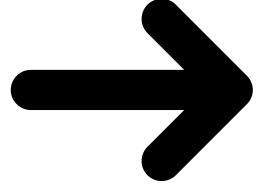


Behavioral Cloning



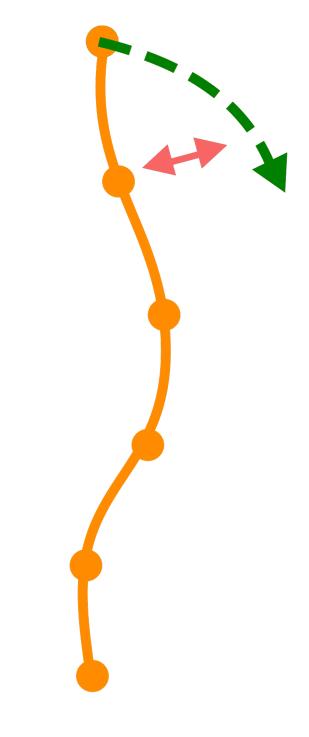
Online





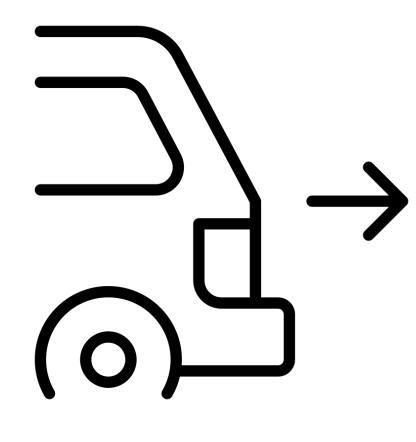
Query Expert

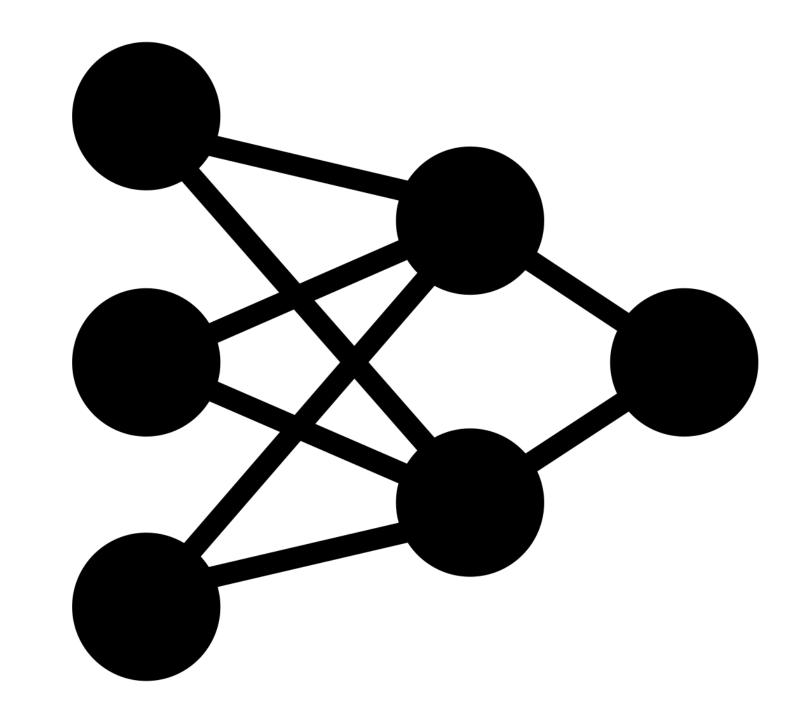
Interactive



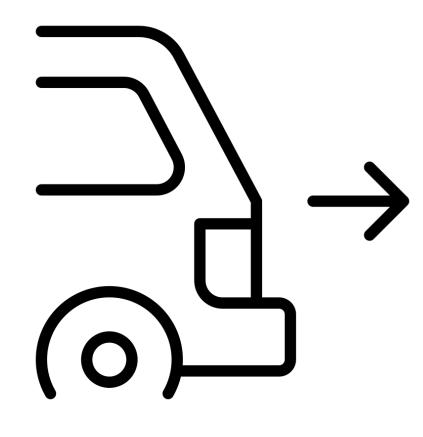
GAIL

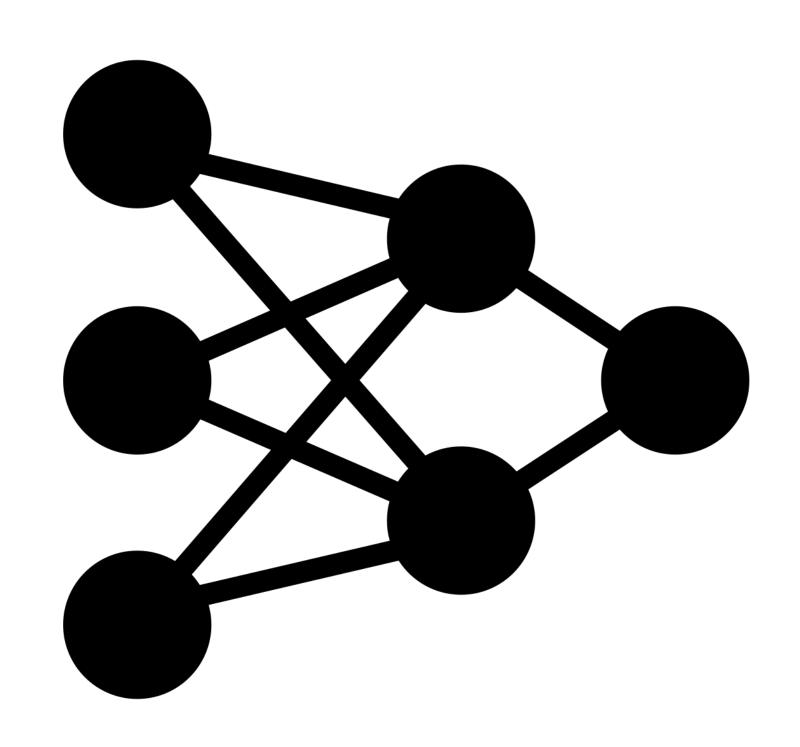
DAgger

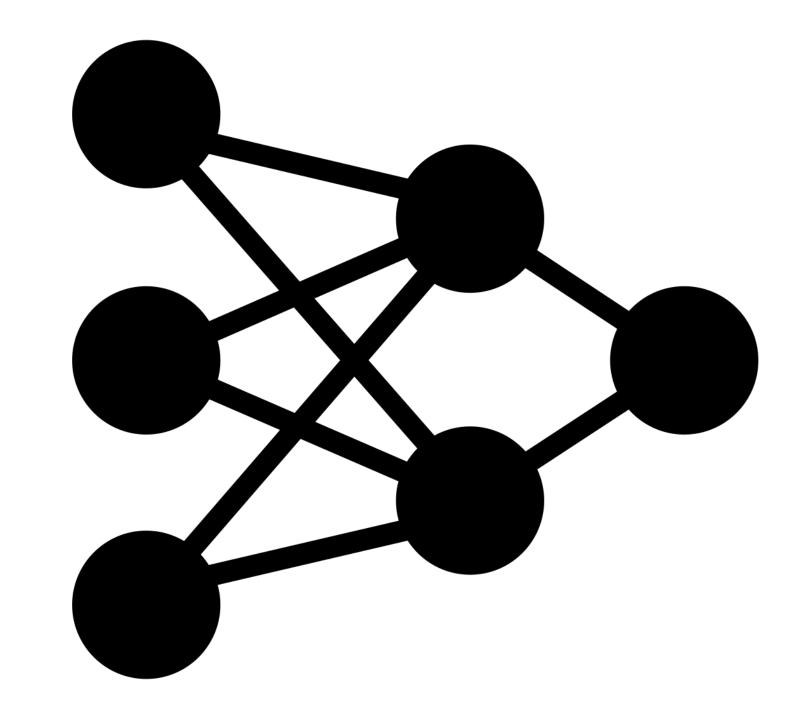


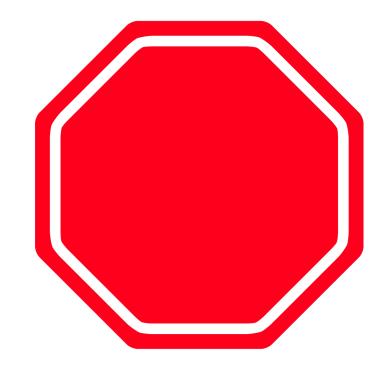


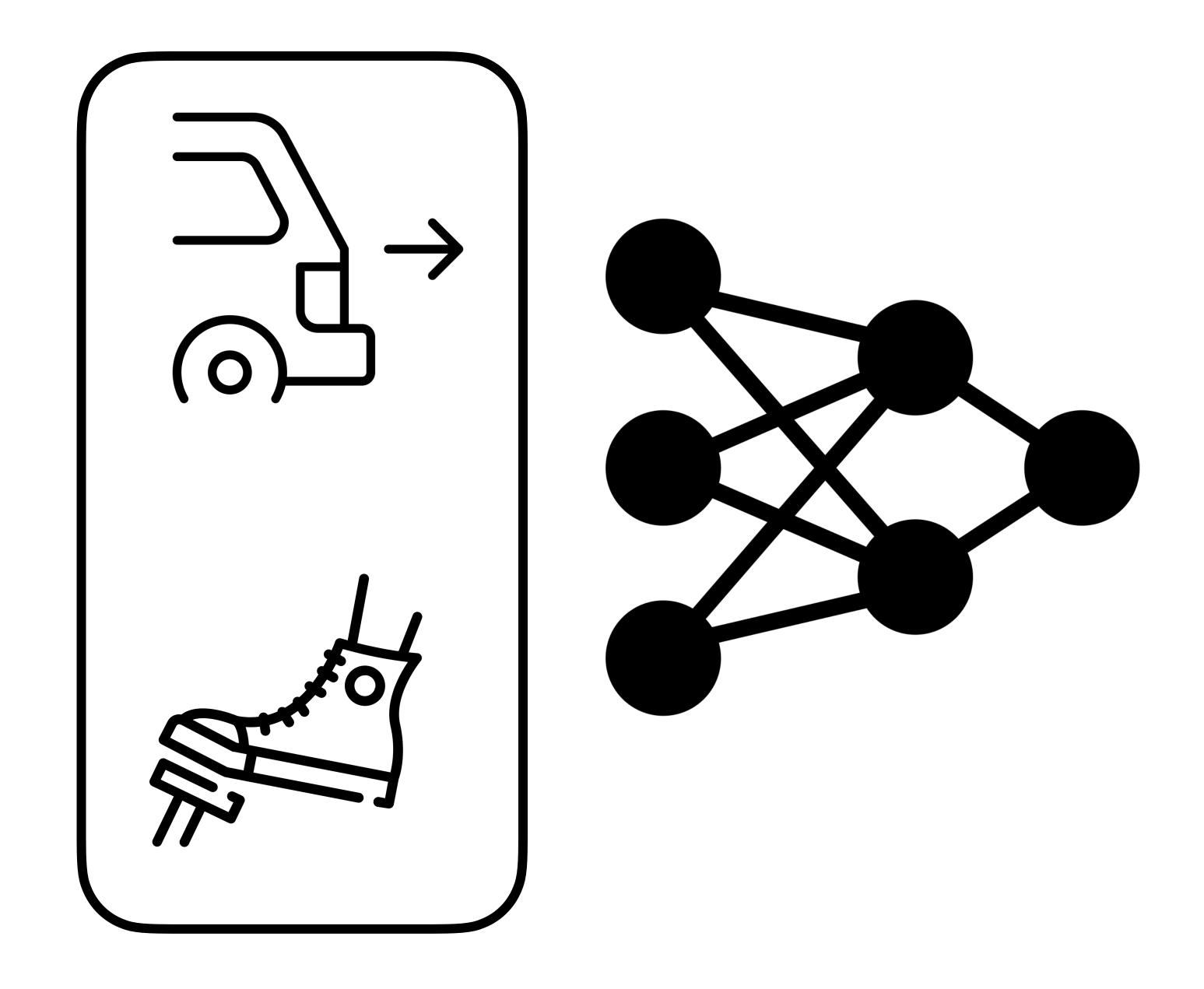
Brake?











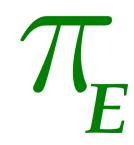
Q: Would DAgger fix this problem?

A: Yes, it's just covariate shift?



Online

Interactive

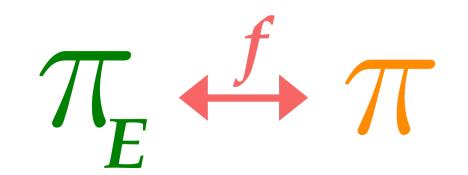


Offline

$J(\pi_E) - J(\pi) \le O(\epsilon T^2)$

Behavioral Cloning ...

GAIL, MaxEnt IRL ...



Online

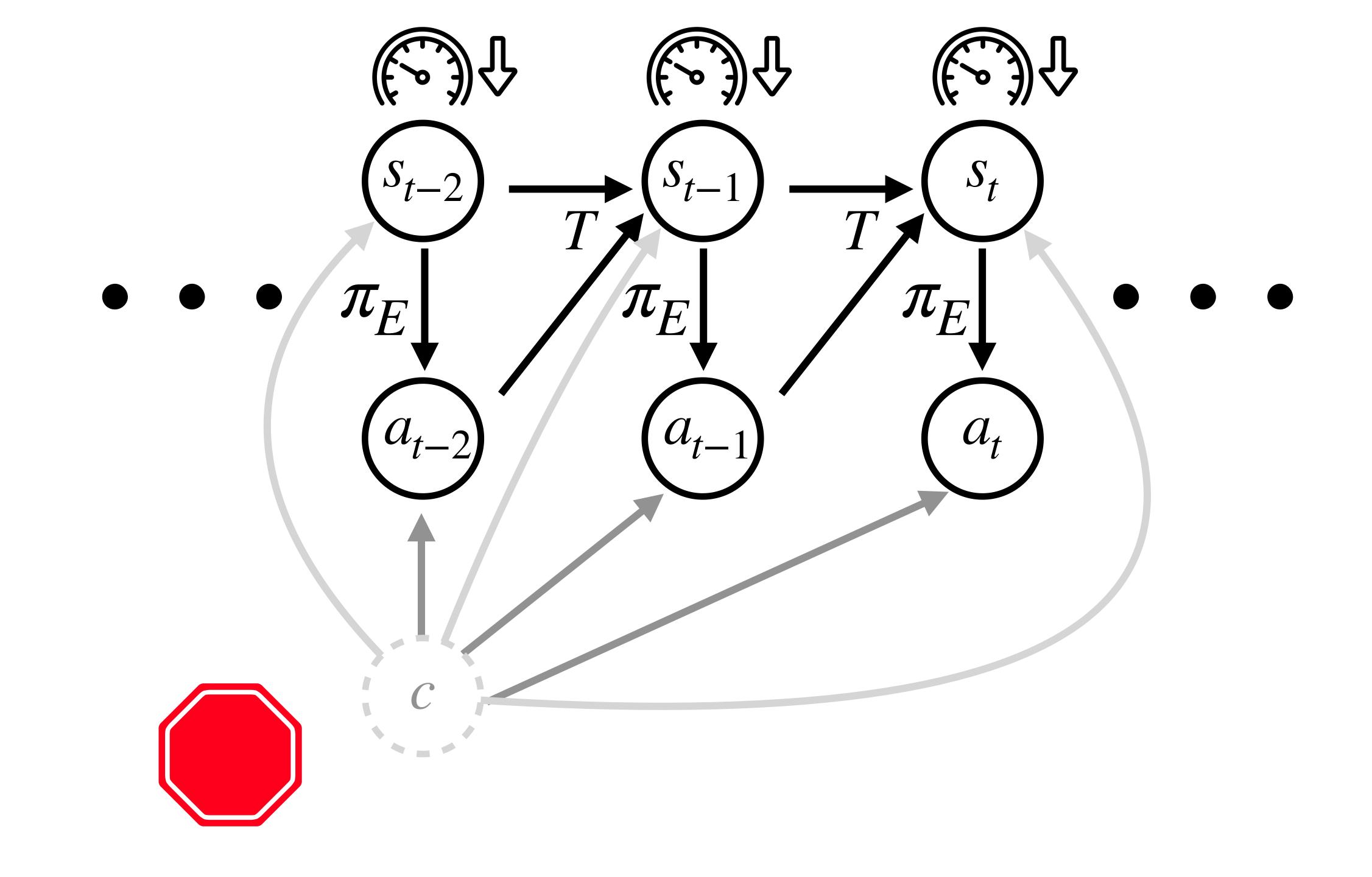
Interactive

 $J(\pi_E) - J(\pi) \le O(\epsilon T)$

 $J(\pi_E) - J(\pi) \le O(\epsilon HT)$

DAgger ...

"Hence, a system trained with multiple frames would merely predict a steering angle equal to the current rate of turn as observed through the camera. This would lead to catastrophic behavior in test mode. The robot would simply turn in circles." — Muller et al., 2006



S_t

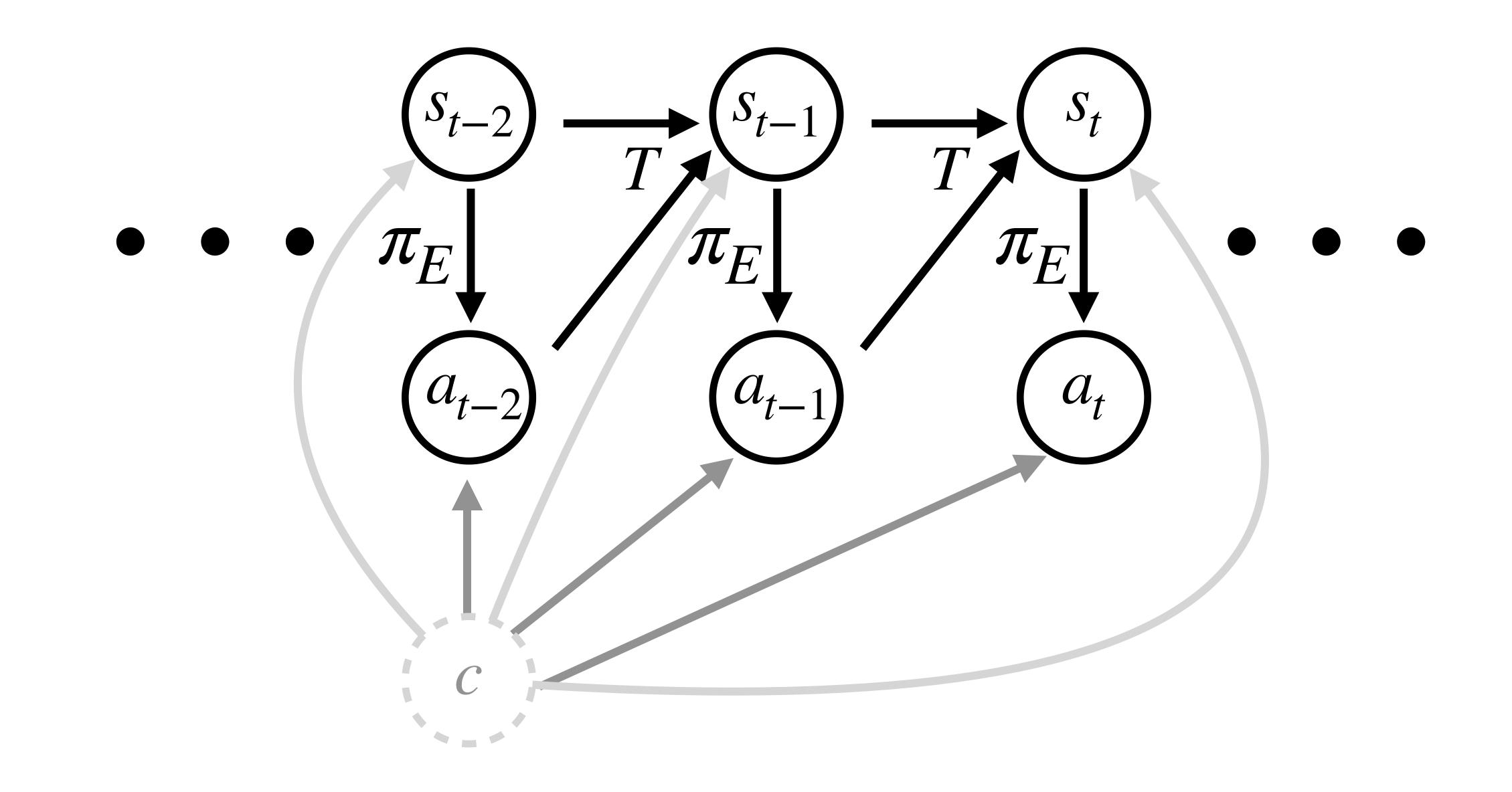
State

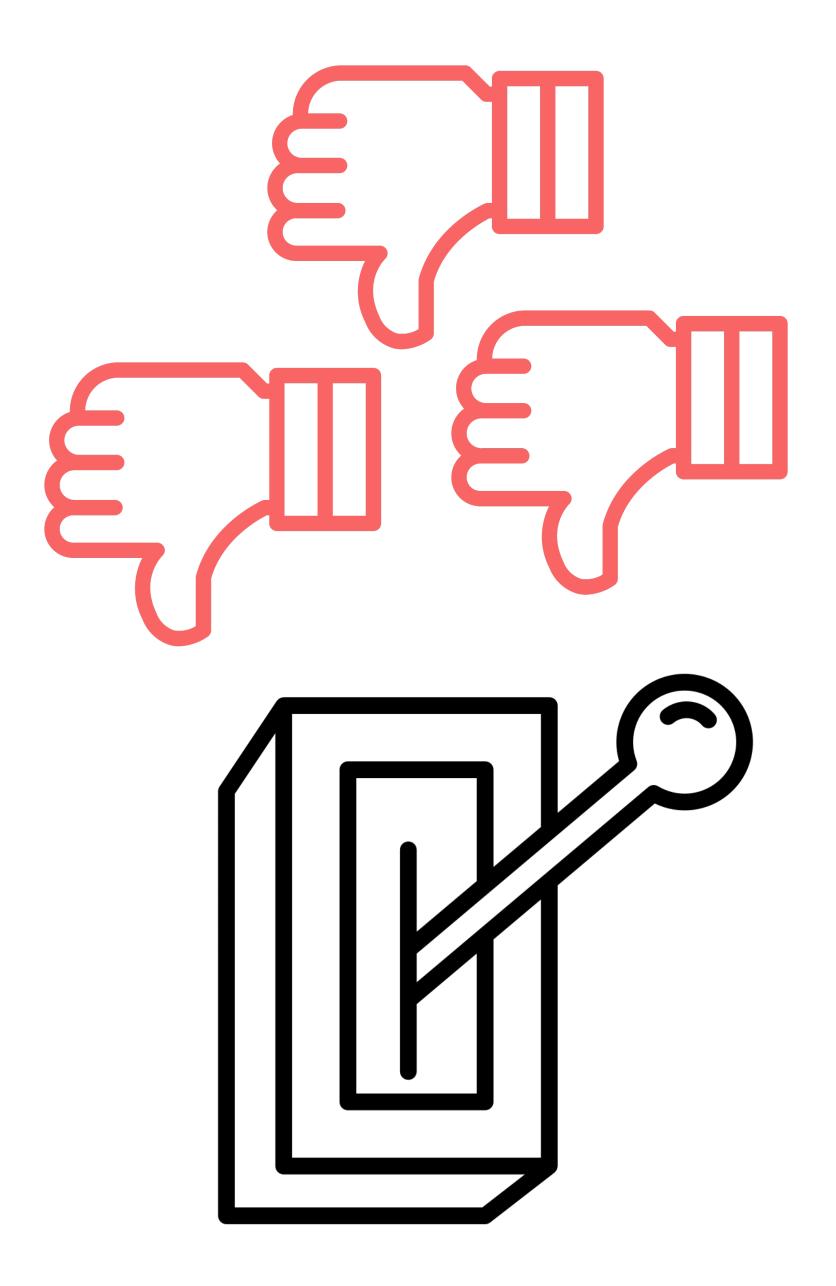
Policy

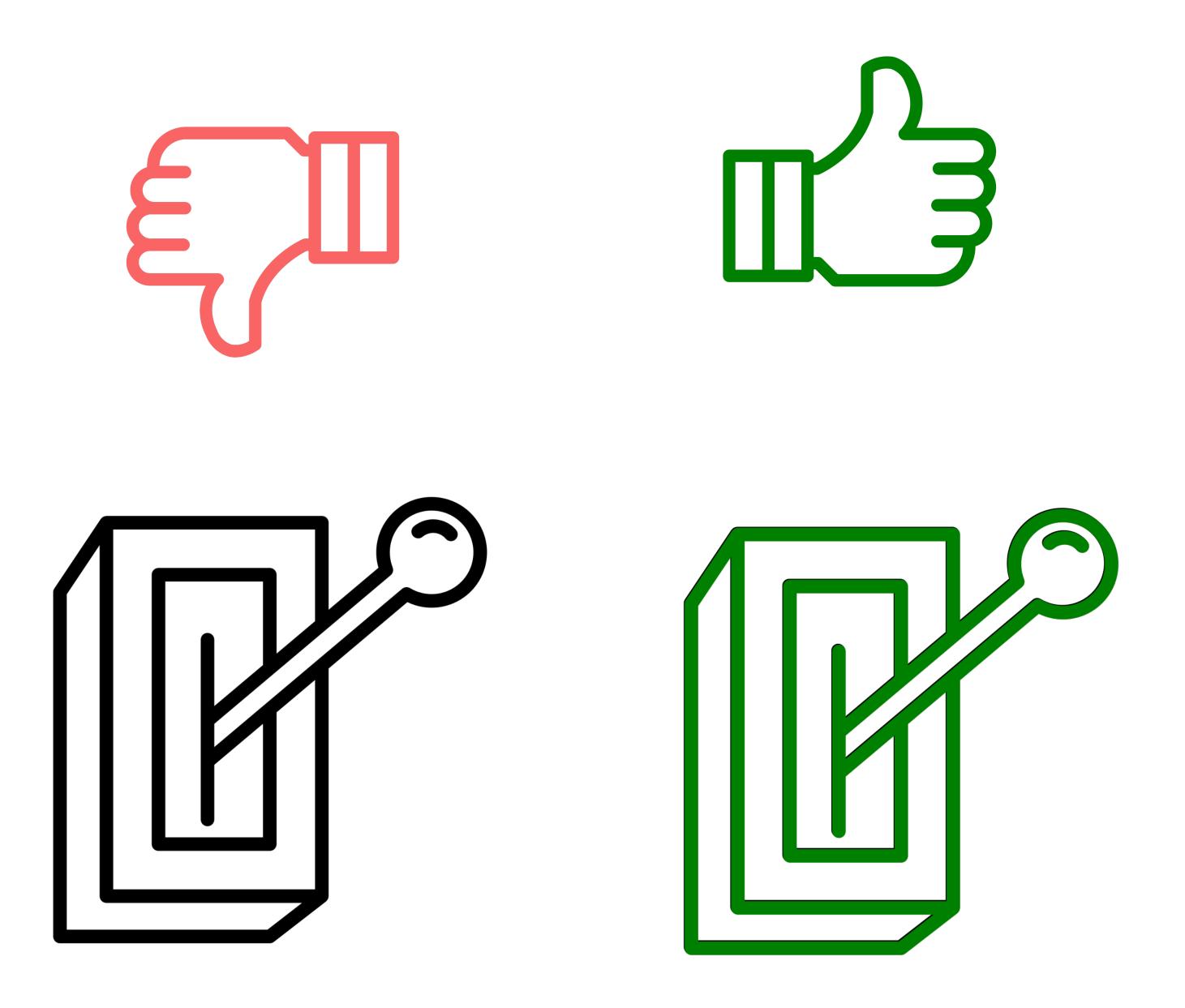
POMDP

 $p(s_t, c | s_1, a_1 \dots s_{t-1}, a_{t-1})$

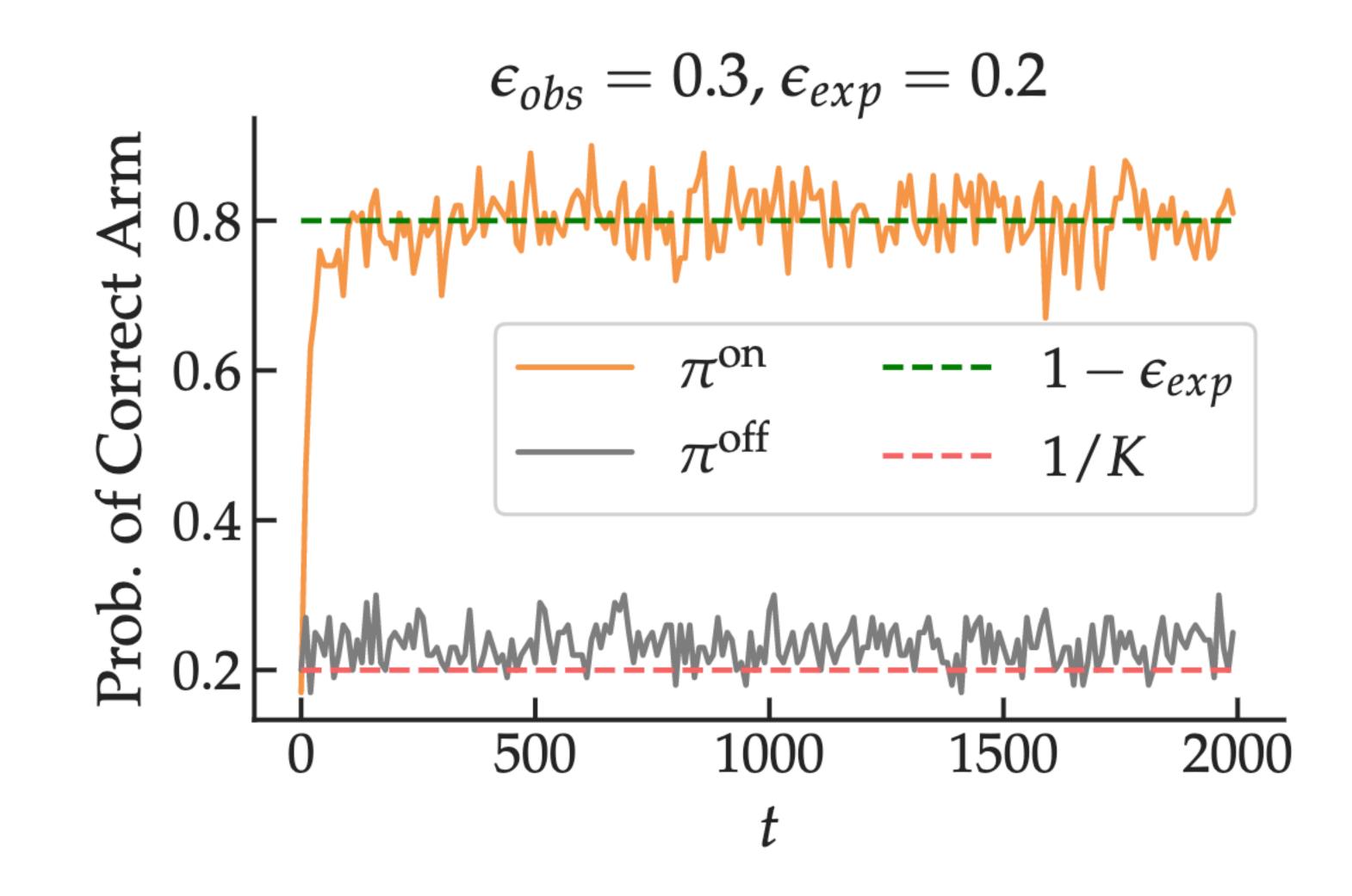
 $\pi(\cdot | s_t) | \pi(\cdot | s_1, a_1 \dots s_{t-1}, a_{t-1})$



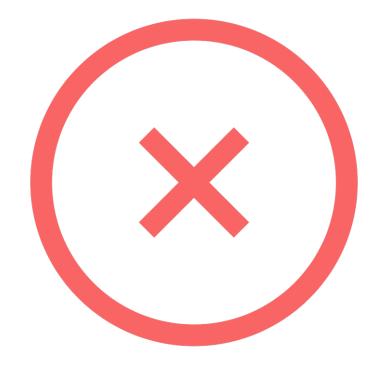




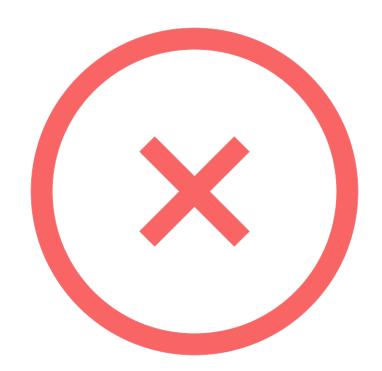
Off-Policy (e.g. BC): On-Policy (e.g. DAgger): 0.8 • • • • 0.8 • ۲ ۲ • ۲ ϵ_{obs} ϵ_{obs} • • ۲ • • 0.4 0.4 0.2 0.2 0.2 0.6 0.8 0.4 0.8 0.2 0.4 0.6 ϵ_{exp} ϵ_{exp}



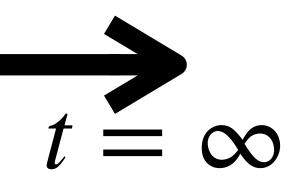
On-Policy:

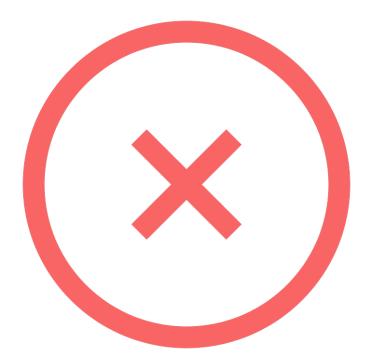


Off-Policy:



t = 0



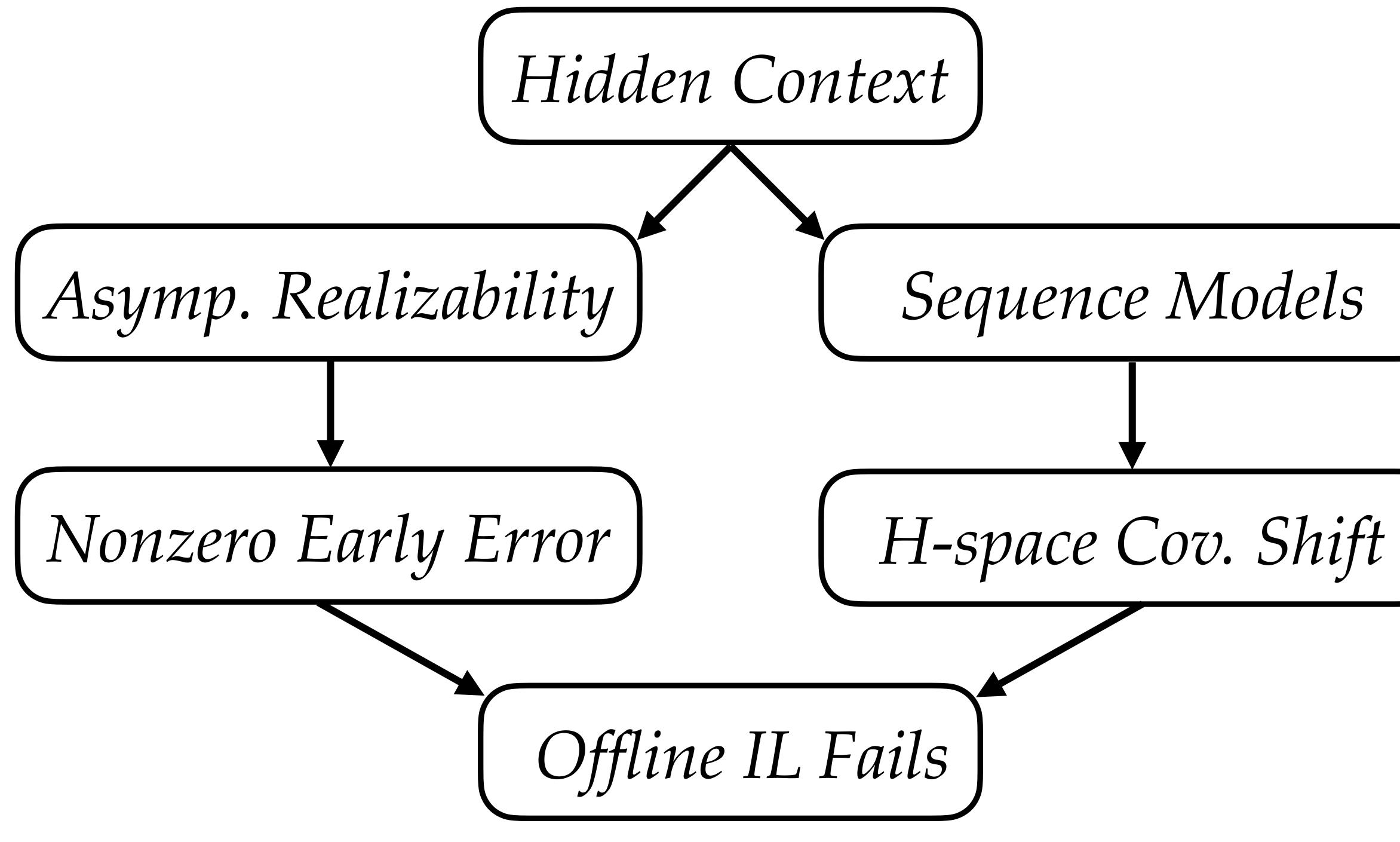


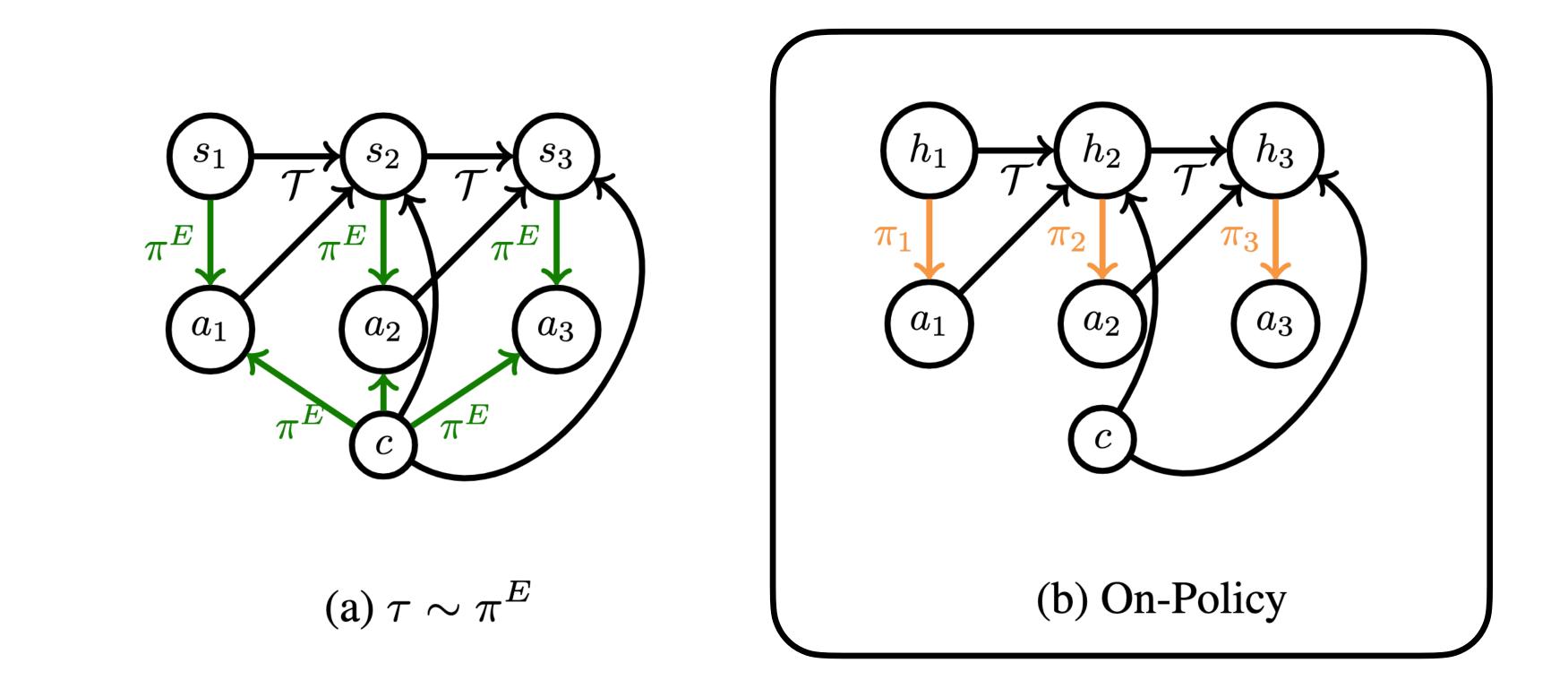
Train-time:

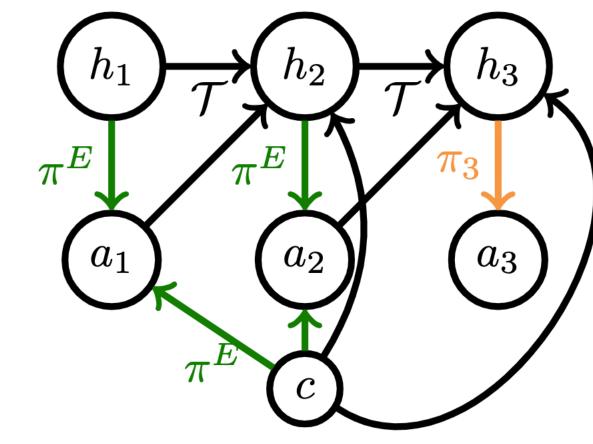
Test-time:

It's just covariate shift in the space of histories!

 $\pi(a_t \mid h_t) \approx p(a_t^E \mid S_1^E, a_1^E, \dots, S_t^E)$ $p(a_t^E | S_1, a_1, \ldots, S_t)$

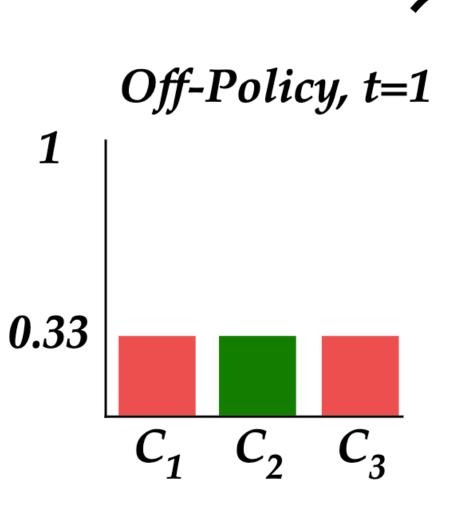






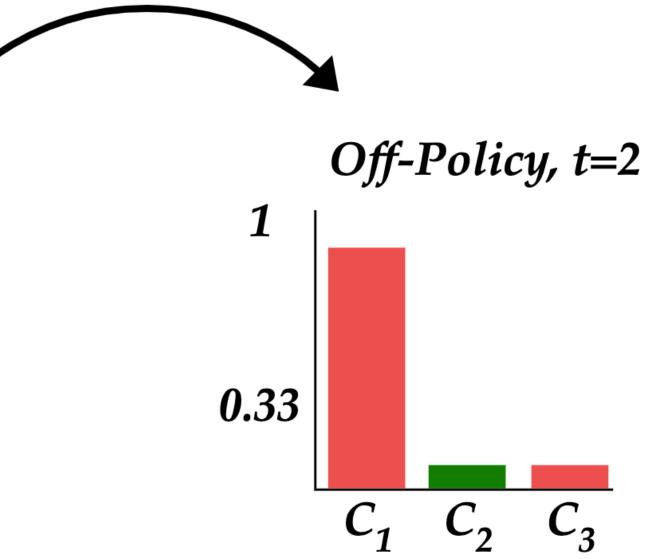
(c) Off-Policy

$p_{\text{on}}(c, h_t) \propto p(\tau; \pi) \propto p(c)p(s_1) \qquad \mathcal{T}(s_{i+1} \mid s_i, a_i, c)$

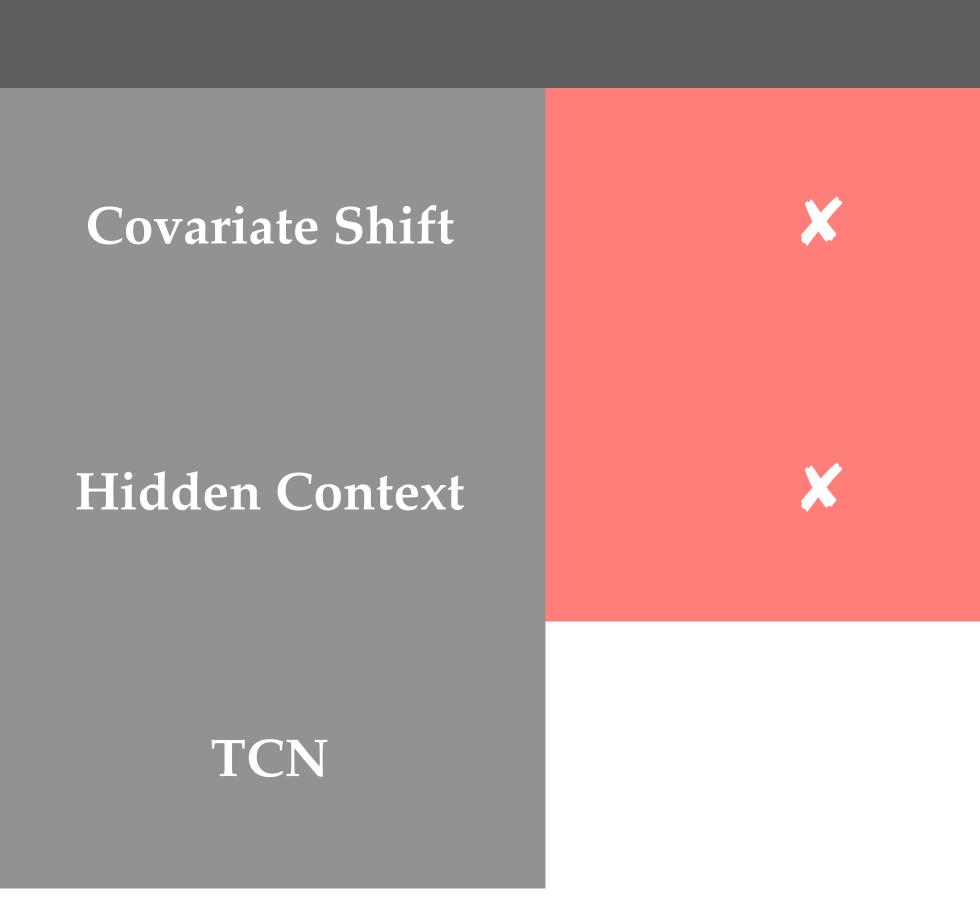


t-1i=1*t*-1 $p_{\text{off}}(c,h_t) \propto p(\tau;\pi^E) \propto p(c)p(s_1) \qquad \pi^E(a_i \mid c, s_i)\mathcal{T}(s_{i+1} \mid s_i, a_i, c)$ i=1

Learner picks arm 1 randomly



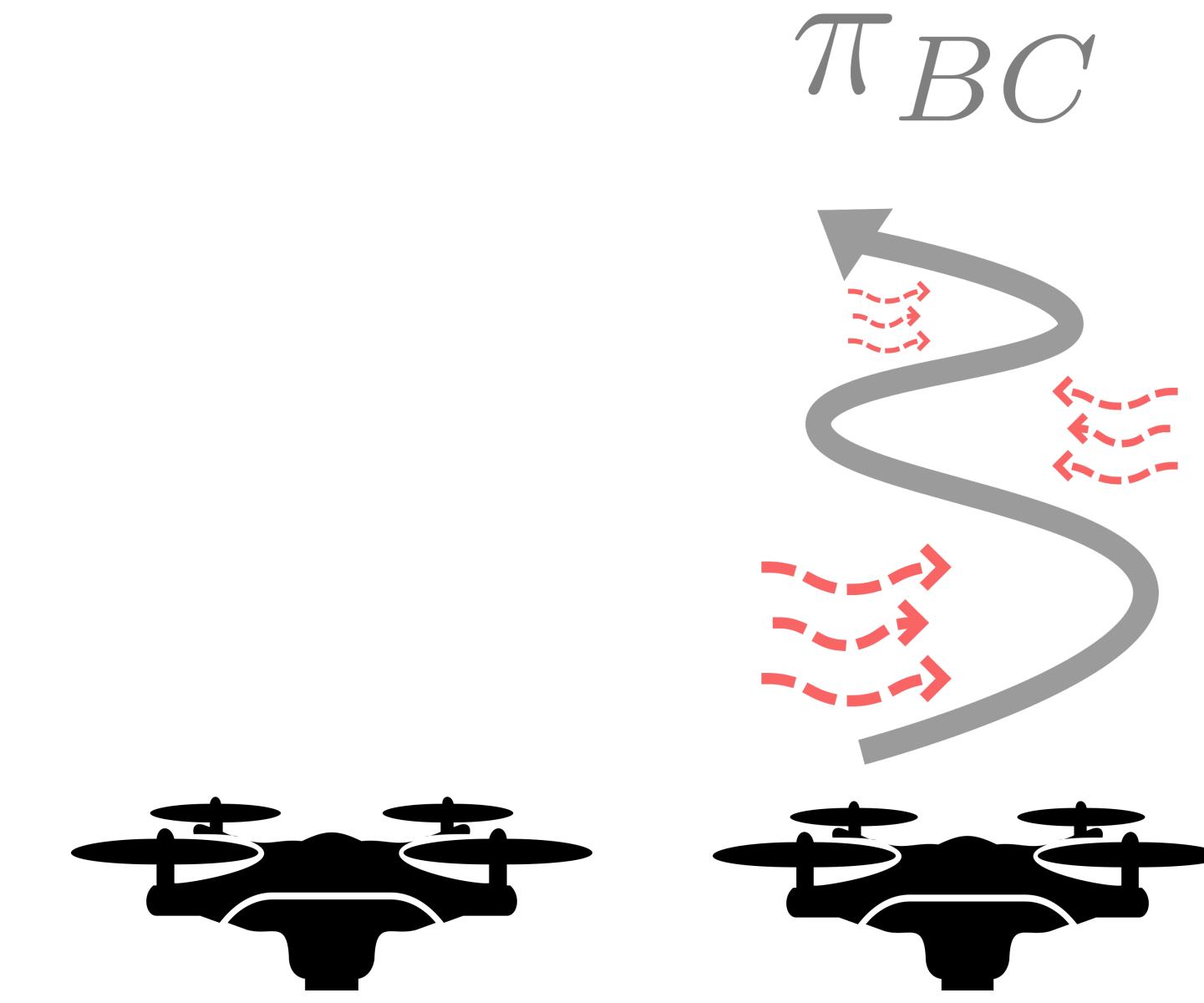
Theorem (informal): Off-policy learners have a value difference to the expert bounded by the sum of their errors (tight) while onpolicy learners have one dependent on their asymptotic error.

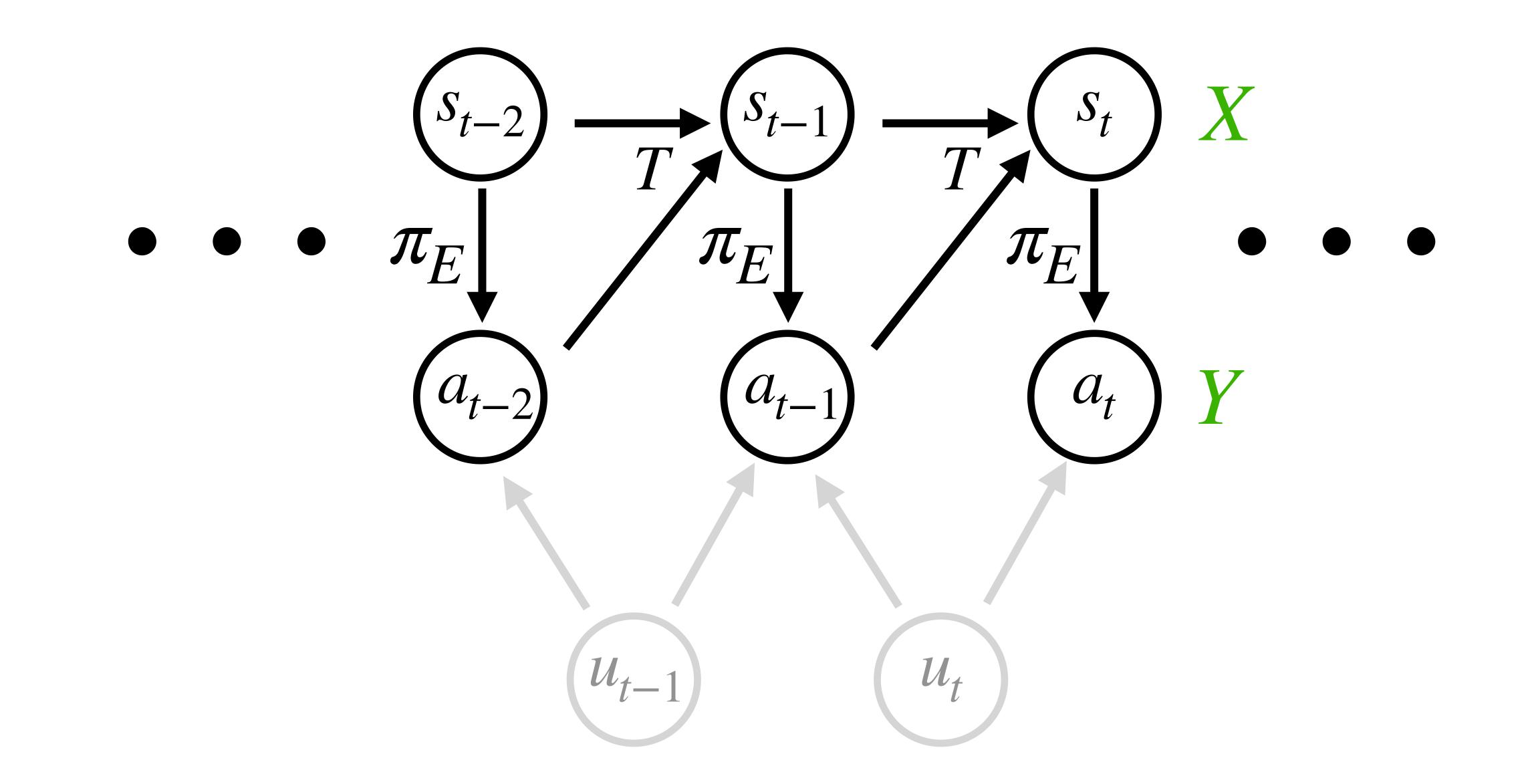


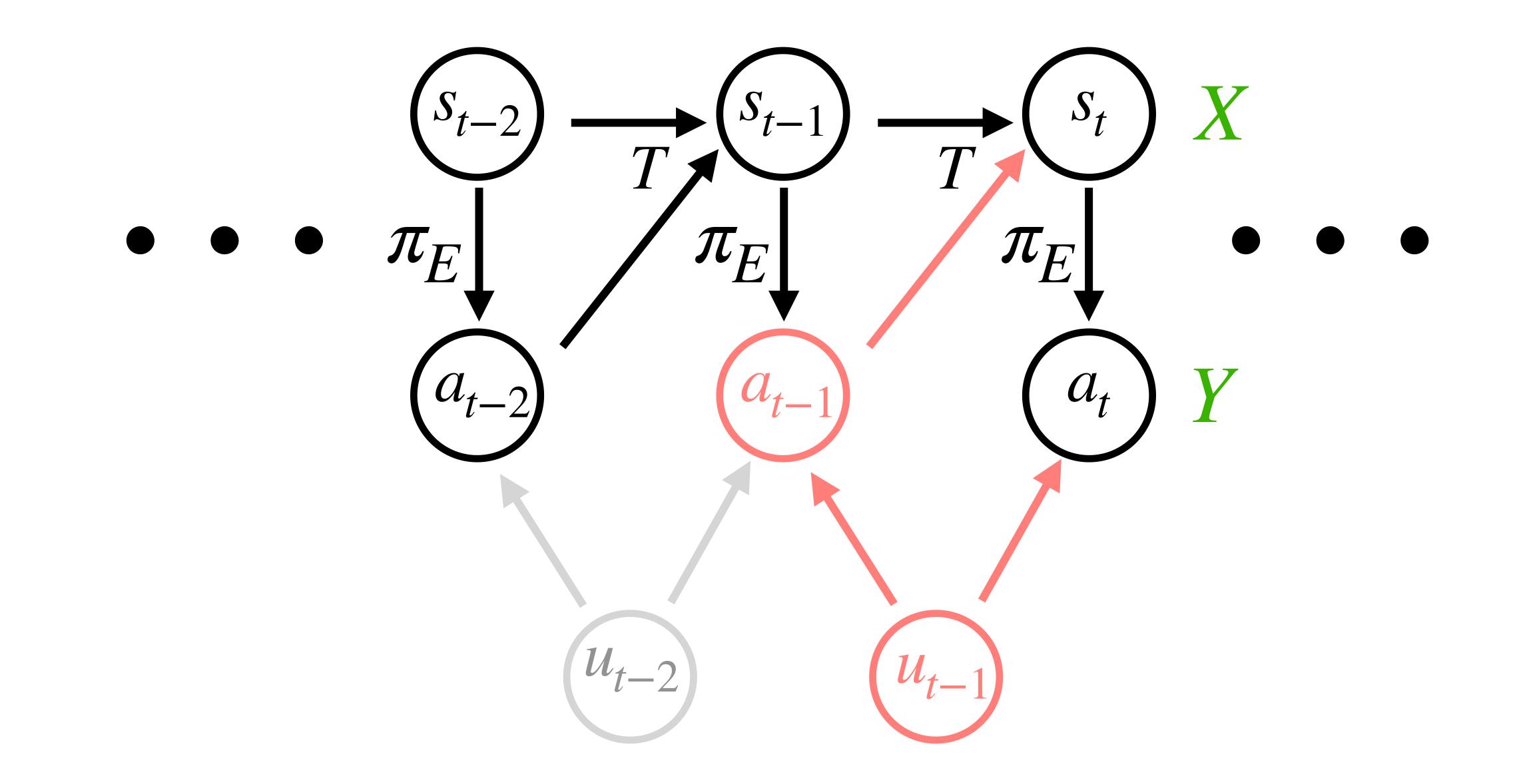
Online

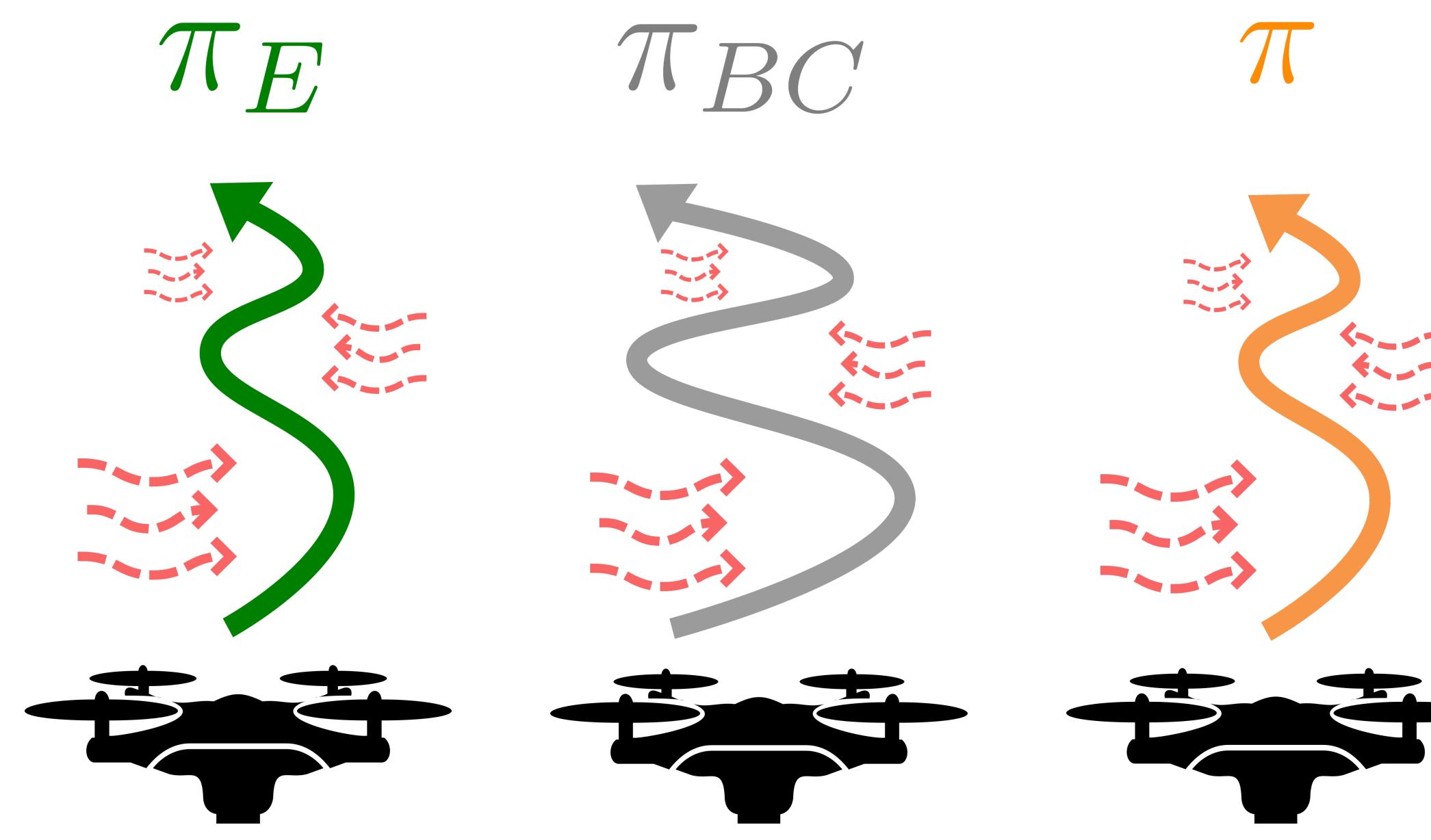
Interactive

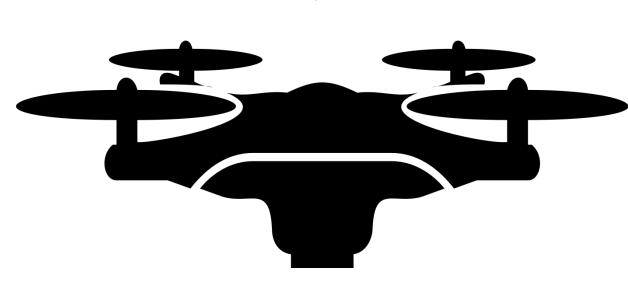
"Actually, since we were fitting a model to a time-series, samples tend to be correlated in time [...] Thus, when leaving out a sample in cross validation, we actually left out a large window (16 seconds) of data around that sample, to diminish this bias." — Ng et al., 2003

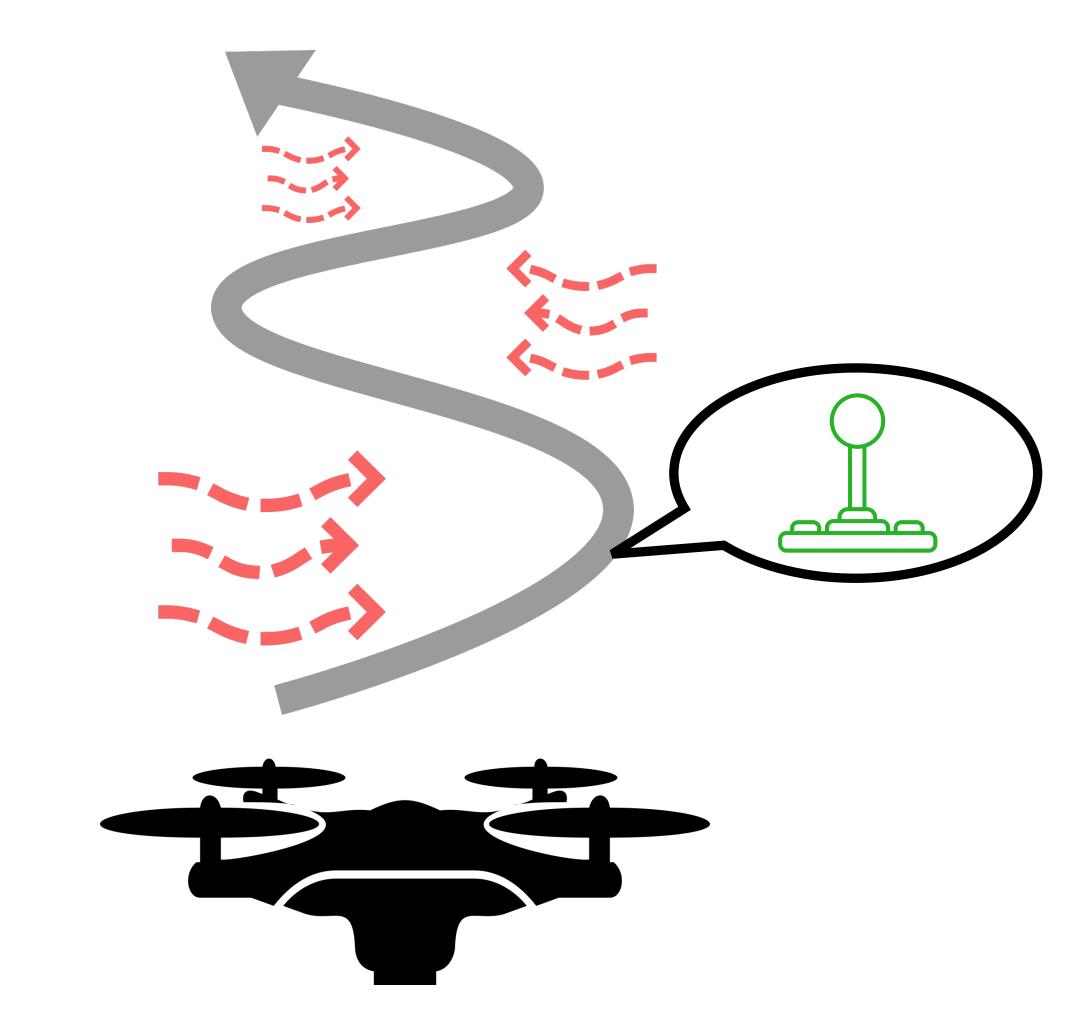


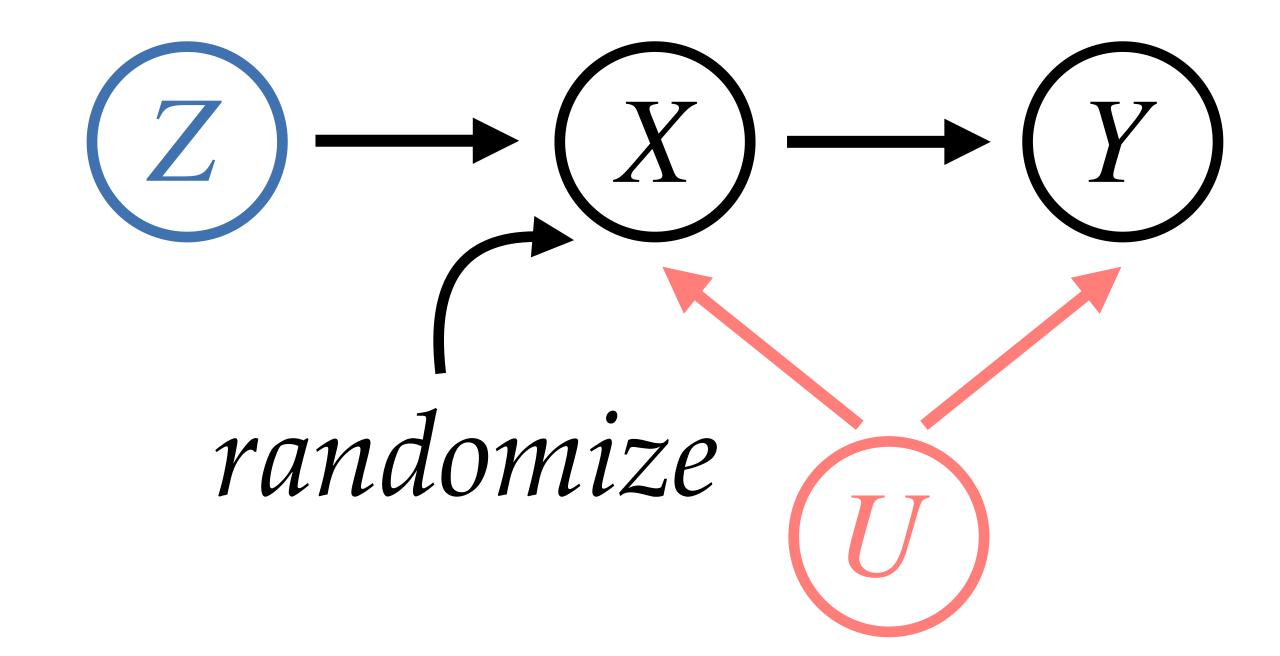






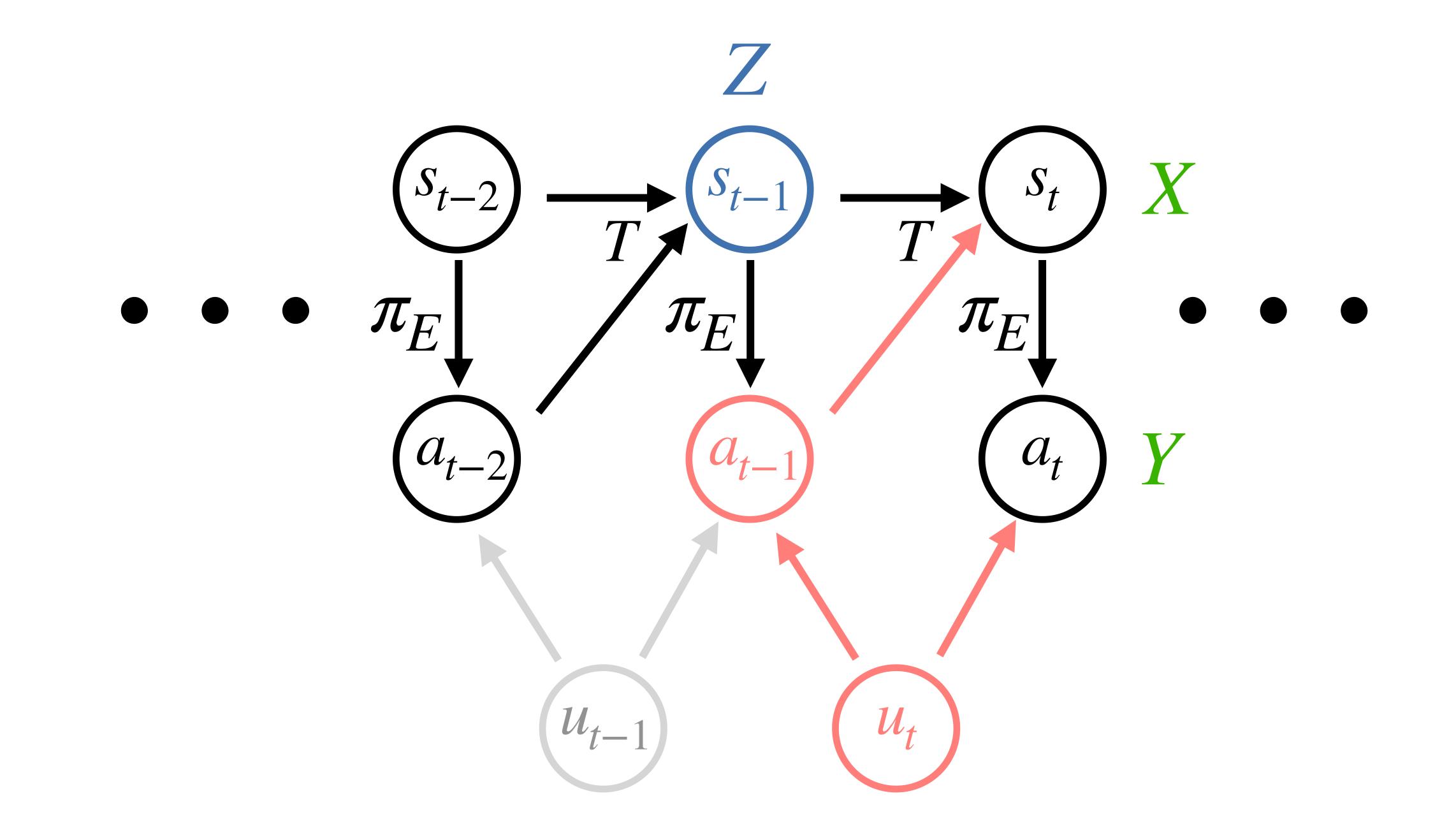


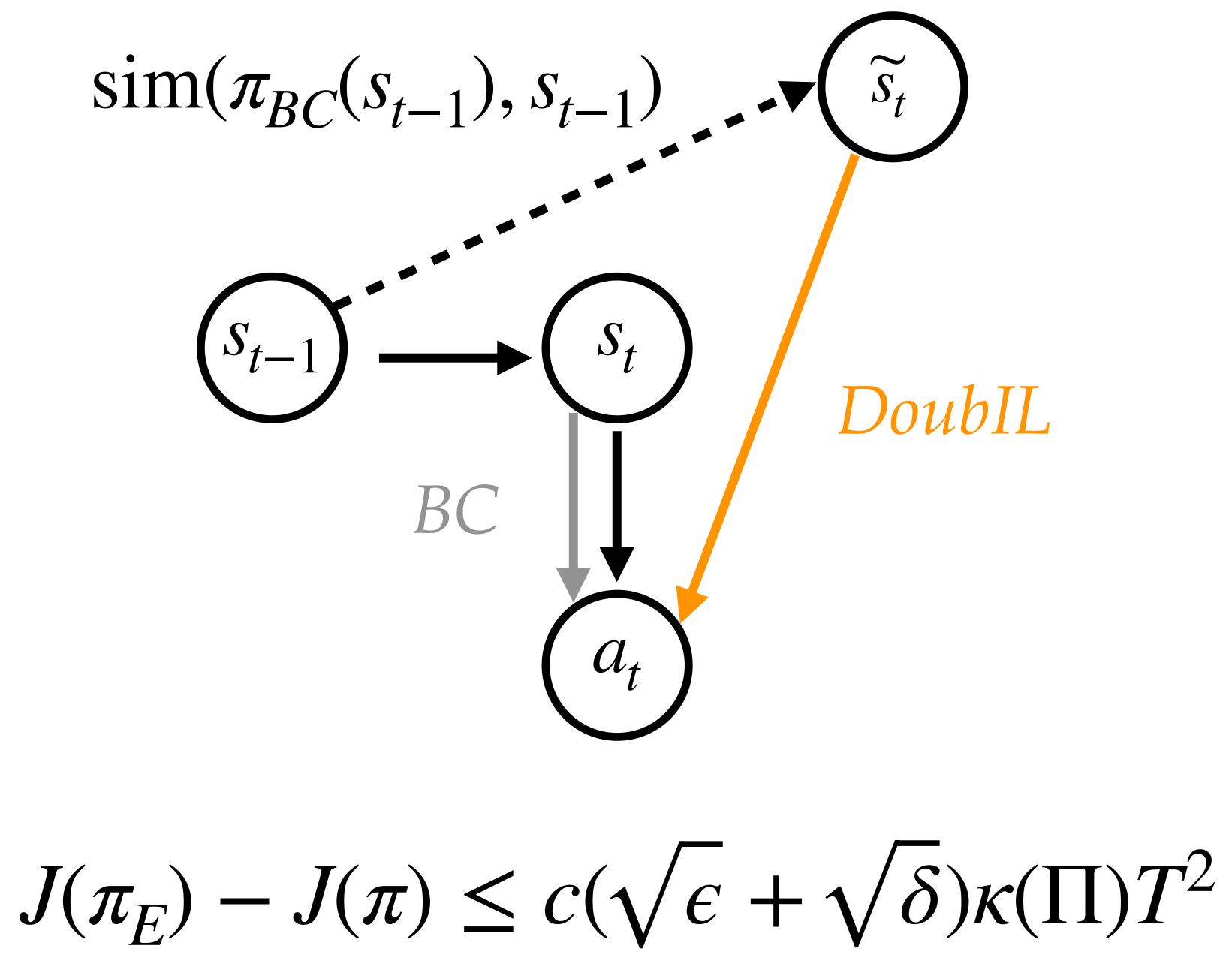




Key Idea: We can condition on instrument Z to counter the effect of confounder U on X.

X = g(Z, U)Y = h(X) + U $\mathbb{E}[U] = 0$ $0 = \mathbb{E}[U] = \mathbb{E}[U|z] = \mathbb{E}[Y - h(X)|z]$ $\Rightarrow \mathbb{E}[Y|z] = \mathbb{E}[h(X)|z], \forall z$ $\Rightarrow \min \mathbb{E}_{z}[(\mathbb{E}[Y|z] - \mathbb{E}[h(X)|z])^{2}]$ h $\Leftrightarrow \min \max \mathbb{E}_{Z}[2(Y - h(X))f(Z) - f^{2}(Z)]$ h





π f

min max $\mathbb{E}[2(a_t - \pi(s_t))f(s_{t-1}) - f(s_{t-1})^2]$

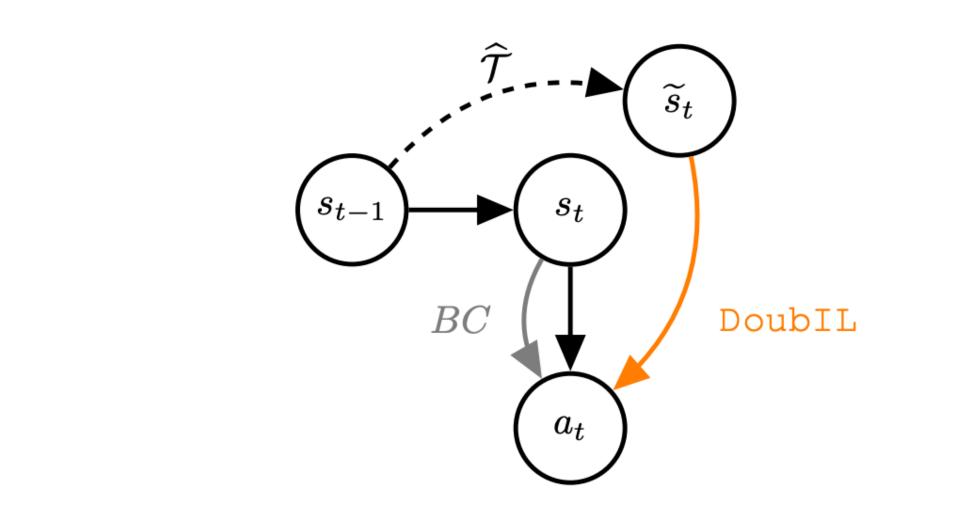
$J(\pi_E) - J(\pi) \le c\sqrt{\epsilon}\kappa(\Pi)T^2$

Instrumental Variable Imitation Learning

generative modeling

game-theoretic

DoubIL

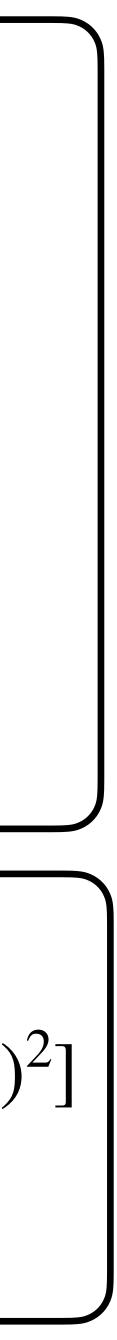


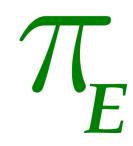
 $J(\pi_E) - J(\pi) \le c(\sqrt{\epsilon} + \sqrt{\delta})\kappa(\Pi)T^2$

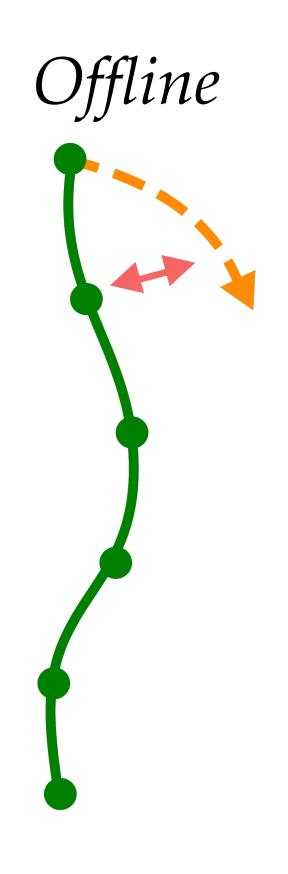
ResiduIL

 $\min_{\pi} \max_{f} \mathbb{E}[2(a_t - \pi(s_t))f(s_{t-1}) - f(s_{t-1})^2]$

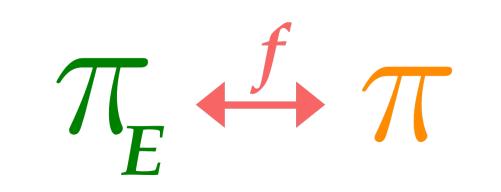
 $J(\pi_E) - J(\pi) \le c\sqrt{\epsilon}\kappa(\Pi)T^2$



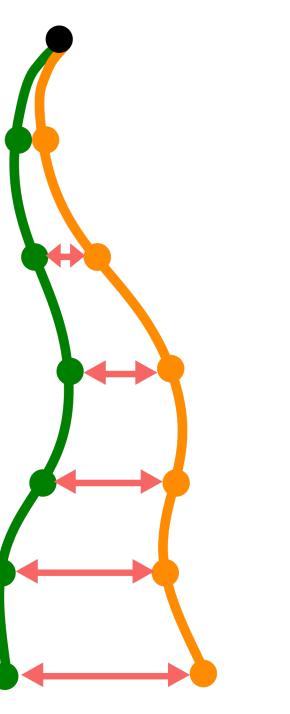




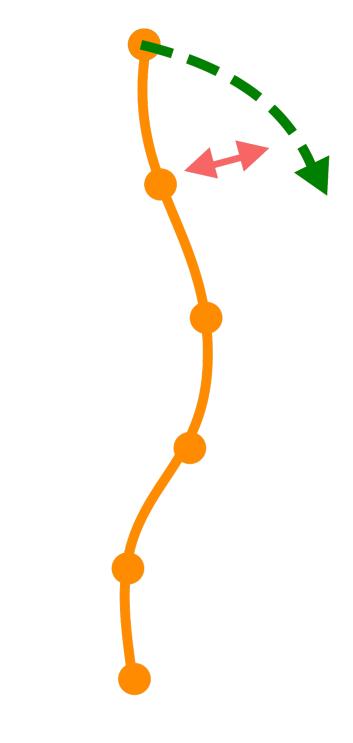
Inconsistent, IVR Consistent Inconsistent, Hybrid?



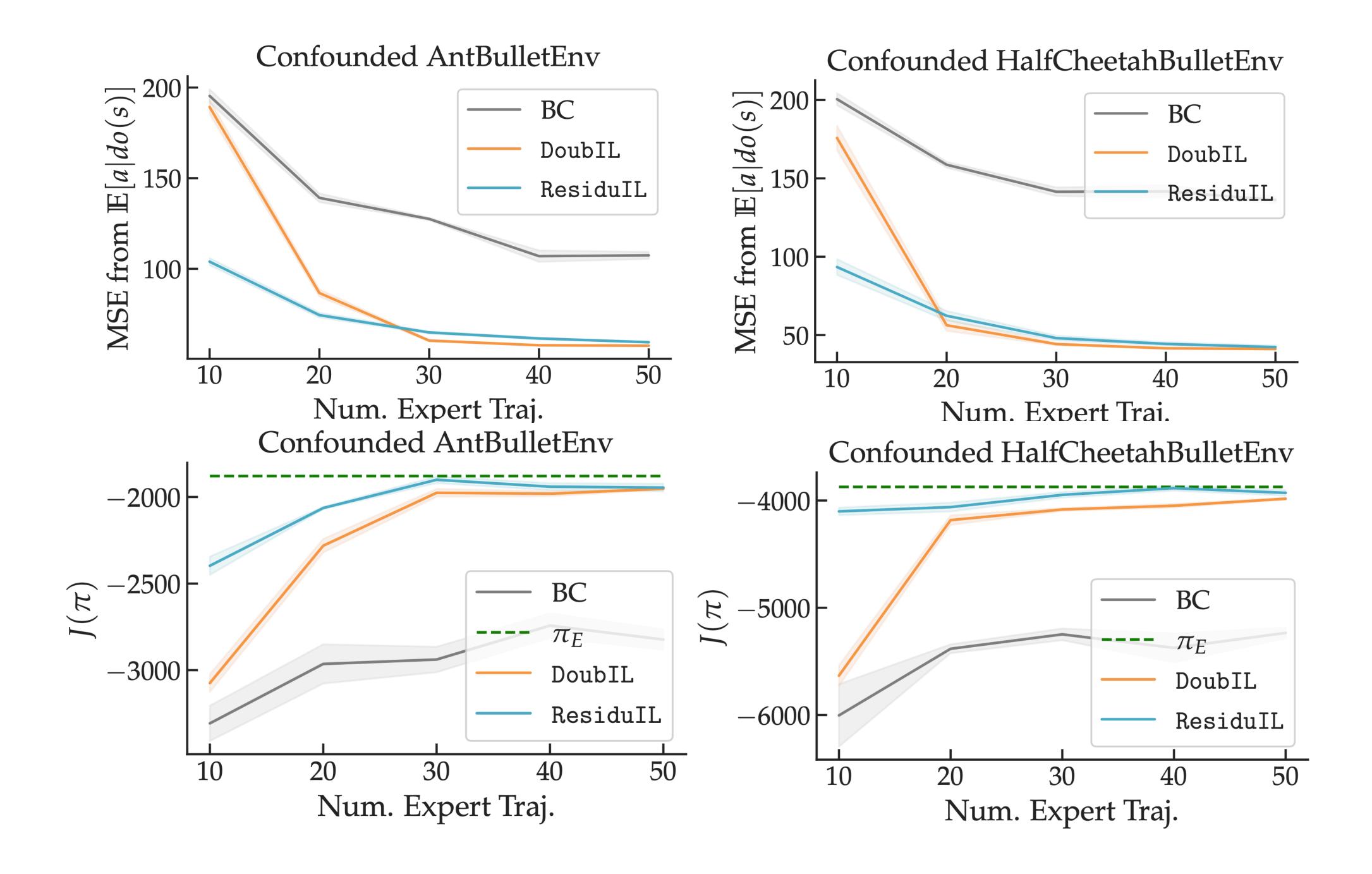
Online

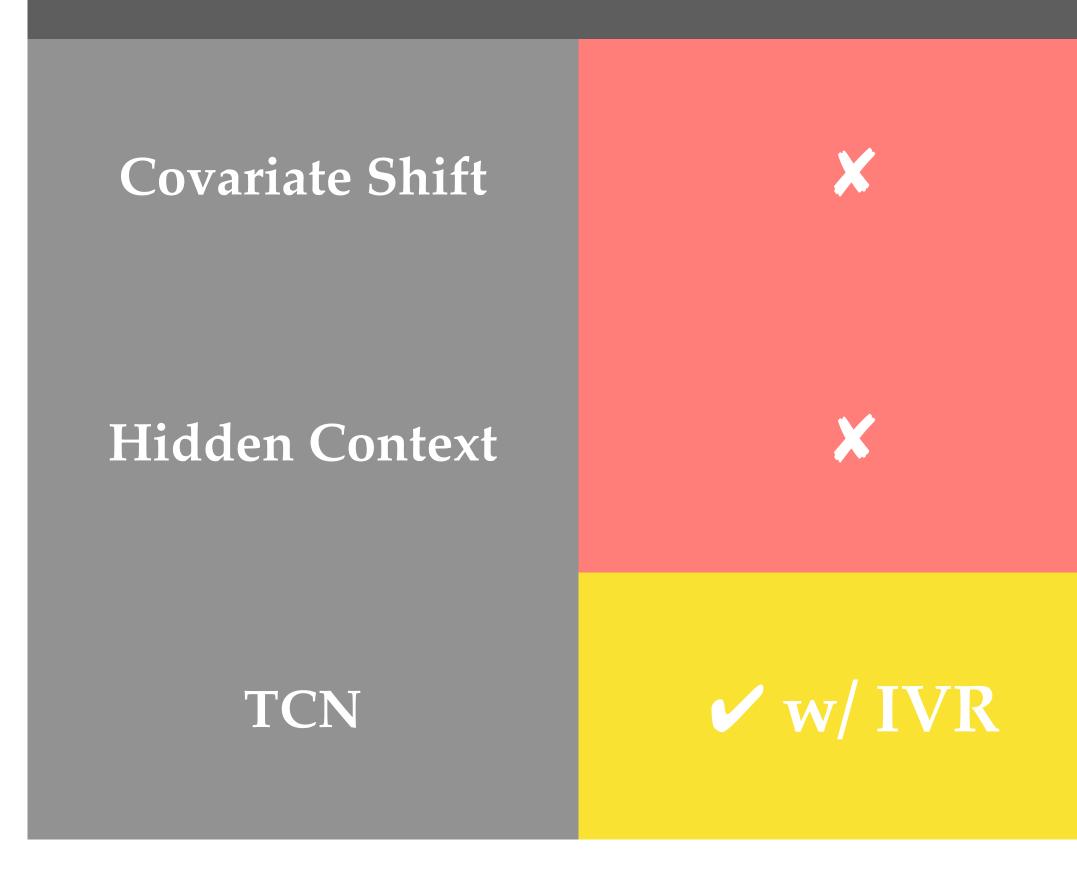


Interactive



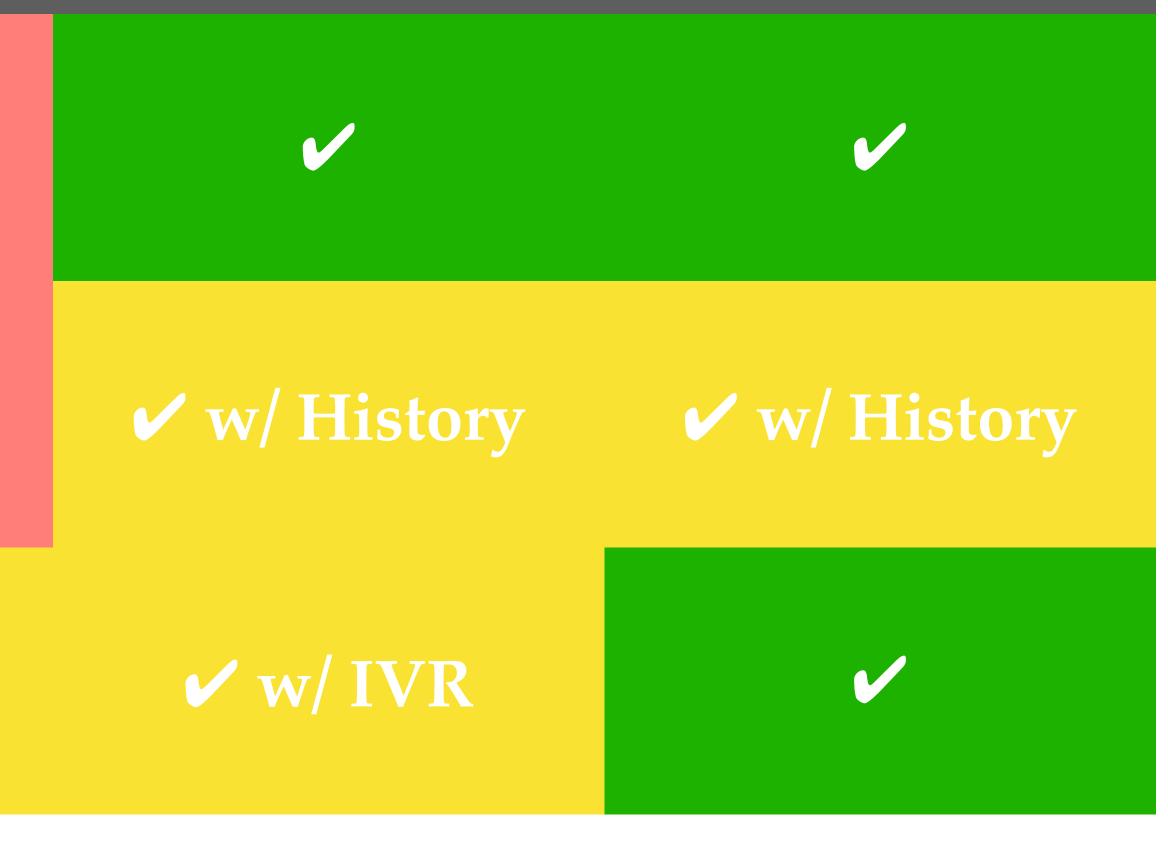
Consistent





Online

Interactive



ventions happen via nteraction with ronment in sequential ecision making.

https://gokul.dev/ <u>gswamy@cmu.edu</u>

Thanks!

