
Leveraging Human Input for Training
Self-Driving Cars

Gokul Swamy
gswamy@cmu.edu

mailto:gswamy@cmu.edu

Key Idea: People in and around cars make
purposeful decisions, which allows us to

design efficient algorithms that take
advantage of this structure.

https://www.youtube.com/watch?v=ttvEppD3Pjk

https://www.youtube.com/watch?v=IaoIqVMd6tc

Q: What sorts of components do we need to be
able to exhibit all the behaviors we just saw?

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic

State Information
CNN

Waypoints
A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic

State Information
CNN

Waypoints
A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic

State Information
CNN

Waypoints
A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic
Waypoints

A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

State Information
CNN

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic
Waypoints

A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

State Information
CNN

Perception
(Camera/LIDAR)

Routing
(Start -> Dest.)

Traffic
Waypoints

A*

Prediction

Decision (turn vs
straight).

Planning

Safety Driver

Controls
(Pedals / Steering)

Q: Where is human input / data required?

State Information
CNN

A2

A1

A3

Imitation Learning

Why IL for Self-Driving?

○We can easily collect data of people driving.

○We can identify the set of things that people care about
when driving, which makes it easy to design a state space.

○We have neither the exploration nor reward design
problems that plague reinforcement learning.

Reward Design

○It is very hard to write down the exact function you’re
optimizing when you’re driving.

○Goodhardt’s Law: when you feed an incorrectly specified
reward function to an optimizer, bad things can happen.

https://www.youtube.com/watch?v=tlOIHko8ySg

Exploration

○Even if you can write down a good reward function, you
then need to learn how to optimize it over the horizon

○In IL, an expert tells us what good states are so we don’t
need to explore as much.

Behavioral Cloning
s = {x, y} a ={ , }

L(π) =
1
N

N

∑
i

(π(si) − ai)2

{a1…an}↦{s1…sn}

Behavioral Cloning

{a1…an}↦{s1…sn}

DAgger

{a1…an}↦{s1…sn}

DAgger Algorithm

1. Initialize empty dataset.

2. Collect data by driving agent around.

3. Have expert label each state with correct action.

4. Append new labeled samples to dataset.

5. Retrain policy on aggregate dataset.

6. If policy unsatisfactory, go back to 2. Else, exit.

What about if you can’t query the expert online?

○RL: reward function policy

○Inverse RL: policy / demonstrations reward function

→

→

r̃
RL

r̃ ← r̃ + rturn

a =

Behavior Prediction

○What if we just fit a network to map state of all
cars to actions of a particular car?

○Problem: your actions actions of other cars

○Thus, if you ever change your policy, your
predictive model might no longer generalize

○So, we want to fit an action-conditional
predictive model.

→

BP Approach 1: Black-Box Model

max
πr

E[Vr(πr, πh)]

s →
ar → → ah

BP Approach 2: Theory-of-Mind

max
πr

E[Vr(πr, πh)]

s →
ar → → ah

arg max
ah

Qh(s, ar, ah)

Model-Free

Trajectory Visualisations @ 2000 HDS

MB-IToMModel-Free

Trajectory Visualisations @ 2000 HDS

MB-IToM

Teleoperation

Teleoperation

Teleoperation

… …

?

Key Insight

We can use decisions that the operator makes in easy settings
with only a few robots to train a predictive model of user behavior

that generalizes to challenging settings with many robots.

Key Insight

We can use decisions that the operator makes in easy settings
with only a few robots to train a predictive model of user behavior

that generalizes to challenging settings with many robots.

Training

f

Key Insight

We can use decisions that the operator makes in easy settings
with only a few robots to train a predictive model of user behavior

that generalizes to challenging settings with many robots.

Training

f

Testing

?

f

s1 s2

s2

..
.

s1

..
.

f

Make automated choices
Rt = arg max

i
f(si

t)

s3s1 s2

t = 1

s4s1 s2

t = 2

s2s1

ϕ(s)
p(Ri) =

eϕ(si)

∑j eϕ(sj)

test

…
< > >…

Step 3: Take the
argmax over the
learned function to
automatically choose
a robot for the user.

train

>

Step 1: Let user freely choose
which of a few robots to

teleoperate.

Step 2: Train a network to mimic user choices by maximizing the
likelihood of the demonstrated choices under the Luce model.

Step 2: To learn a function that generalizes to an arbitrary number of robots,
we model the user as making rational choices to maximize utility across all robots:

Then, we train a network to mimic these choices by maximizing the log likelihood:

Scaled Autonomy

Questions?

