Leveraging Human Input for Training Self-Driving Cars

Gokul Swamy gswamy@cmu.edu

Key Idea: People in and around cars make purposeful decisions, which allows us to design efficient algorithms that take advantage of this structure.

Uber ATG

ARGOAI

Uber ATG

Q: What sorts of components do we need to be able to exhibit all the behaviors we just saw?

- OWe can easily collect data of people driving.
- OWe can identify the set of things that people care about when driving, which makes it easy to design a state space.
- OWe have neither the exploration nor reward design problems that plague reinforcement learning.

Why IL for Self-Driving?

Reward Design

OIt is very hard to write down the exact function you're optimizing when you're driving.

- OGoodhardt's Law: when you feed an incorrectly specified reward function to an optimizer, bad things can happen.

OEven if you can write down a good reward function, you then need to learn how to optimize it over the horizon

need to explore as much.

Exploration

OIn IL, an expert tells us what good states are so we don't

$$\{s_1 \dots s_n\}$$

 $L(\pi) = \frac{1}{N}$

$$\mapsto \{a_1 \dots a_n\}$$

$$\frac{1}{N}\sum_{i}^{N}(\pi(s_i)-a_i)^2$$

$$\{s_1 \dots s_n\}$$

Behavioral Cloning

$$\mapsto \{a_1 \dots a_n\}$$

- 1. Initialize empty dataset.
- 2. Collect data by driving agent around.
- 3. Have expert label each state with correct action.
- 4. Append new labeled samples to dataset.
- 5. Retrain policy on aggregate dataset.
- 6. If policy unsatisfactory, go back to 2. Else, exit.

DAgger Algorithm

What about if you can't query the expert online?

ORL: reward function \rightarrow policy OInverse RL: policy / demonstrations \rightarrow reward function

OWhat if we just fit a network to map state of all cars to actions of a particular car?

OProblem: your actions \rightarrow actions of other cars

OThus, if you ever change your policy, your predictive model might no longer generalize

OSo, we want to fit an action-conditional predictive model.

Behavior Prediction

BP Approach 1: Black-Box Model

 $\max E[V_r(\pi_r, \pi_h)]$ π_r

 $\max E[V_r(\pi_r, \pi_h)]$ π_r

BP Approach 2: Theory-of-Mind

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

Key Insight

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

Training

Key Insight

We can use decisions that the operator makes in easy settings with only a few robots to train a predictive model of user behavior that generalizes to challenging settings with many robots.

Training

Key Insight

Testing

t = 2

Step 1: Let user freely choose which of a few robots to teleoperate.

Step 2: Train a network to mimic user choices by maximizing the likelihood of the demonstrated choices under the Luce model.

Scaled Autonomy

Step 3: Take the argmax over the learned function to automatically choose a robot for the user.

Questions?

